Могут ли рыбы и другие морские животные утонуть

Могут ли рыбы и другие морские животные утонуть Кислород
Содержание
  1. Как определить, что причиной гибели рыбы стал недостаток кислорода?
  2. Почему опасное снижение уровня кислорода чаще случается летом?
  3. Ароморфозы рыб
  4. Другие механизмы дыхания у рыб
  5. Значение кислорода и опасноть снижения его уровня
  6. Как дышат аквариумные рыбки — презентация к уроку окружающий мир
  7. Как противостоять опасному снижению уровня кислорода и гибели рыбы?
  8. Как рыбы дышат?
  9. Кислород — это название химического элемента и название простого вещества. химия пж срочно . я на контрольной хелп ми плиз какое из значений мы имеем в виду, когда говорим: а) молекула воды состоит из атомов водорода и кислорода, б) рыбы дышат растворенным в воде кислородом? —
  10. Костные рыбы
  11. Могут ли рыбы и другие морские животные утонуть
  12. Плавательный пузырь
  13. Роль кислорода в жизнедеятельности рыб – моя ферма онлайн — фермерский портал о сельском деле

Как определить, что причиной гибели рыбы стал недостаток кислорода?

Есть несколько признаков, по которым можно определить, что причиной массовой гибели рыбы стало именно снижение уровня кислорода в пруду:
— вся рыба умирает одновременно (часто ночью или в предрассветные часы)
— смертность большой рыбы заметно выше, чем мелкой
— умирающая рыба видна у поверхности воды, «ловя воздух ртом»
— некоторые виды гибнут с изогнутой спиной, сильно раскрытыми жабрами и открытым ртом.

Почему опасное снижение уровня кислорода чаще случается летом?

Известно, что опасное снижение уровня кислорода в искусственных рыбоводческих прудах, приводящее к массовой гибели рыб, хотя и может произойти в любой сезон и при любой погоде, чаще, все же, происходит в жаркую летнюю погоду. У этого несколько причин:

Плохо!Плохо!Плохо!относительно богатый кислородом слои перемешиваются — но избыток кислорода в верхнем слое был весьма относительным, и часто его не хватает, чтобы компенсировать отсутствие кислорода внизу водоема. Поэтому, при перемешивании слоев, часто наступает ситуация недостатка кислорода — и если при этом потребность в нем высока, то наступает опасное снижение его уровня и, возможно, гибель рыбы.

Ароморфозы рыб


Рыбы отличаются от предшествующих эволюционных форм новыми, прогрессивными чертами строения, которые повысили их
уровень организации. Давайте их перечислим.

  • Появление челюстей и черепа
  • У рыб первая пара жаберных дуг видоизменяется в челюсти. С помощью челюстей охота становится более эффективной, а питание — разнообразным.

    У рыб появляется череп — костное вместилище головного мозга и органов чувств, которое надежно защищает эти
    структуры нервной системы.

  • Парные плавники
  • Образуются предшественники конечностей, плавники, парные придатки тела, обособленные от туловища и головы, приводимые в
    движение мускульной силой.

  • Редукция хорды и формирование костного позвоночника
  • У рыб хорда редуцируется, на ее месте формируется позвоночник. У хрящевых рыб позвоночник в течение всей жизни имеет хрящевое строение, а у костных рыб позвоночник окостеневает: он представлен костной тканью.

    Обратите особое внимание, что в скелете хрящевых ганоидов (осетровых рыб) хорда сохраняется на всю жизнь.

Другие механизмы дыхания у рыб

Многие рыбы дышат через кожу, особенно когда рождаются, потому что они настолько малы, что у них нет специализированных органов. По мере роста развиваются жабры, потому что диффузии через кожу недостаточно. 20% или более кожного газообмена наблюдают у некоторых взрослых рыб.

Некоторые виды рыб имеют развитые полости за жабрами, которые заполняются воздухом. У других сложные органы, развитые из орошаемой жаберной дуги, формируются и действуют как легкое.

Некоторые рыбы дышат воздухом без специальной адаптации. Американский угорь покрывает 60% потребностей в кислороде через кожу и 40% заглатывает из атмосферы.

Значение кислорода и опасноть снижения его уровня

Как известно, рыбы дышат растворенным в воде газообразным кислородом (нет, они не разлагают молекулу H2O на водород и кислород — это им не по силам). Вода попадает в жабры рыб, где кислород через стенки жабр, представляющие собой, по сути, мембраны, проникает в кровоток.

У кислорода, растворенного в воде, три источника: 1) прямая диффузия из атмосферы, 2) взаимодействие ветра и волн (хотя этот путь проникновения кислорода можно рассматривать и как частный случай диффузии), и 3) фотосинтез. Из этих трех, наиболее важным путем попадания кислорода в воду является фотосинтез, производимый водными растениями и фитопланктоном.

Кислород, попадающий в воду путем фотосинтеза, производится растениями и фитопланктоном во время светового дня, когда светит солнце. В ночное время, уровень кислорода в воде падает из-за дыхания животных, включая рыб, и, опять же, растений. Эти колебания происходят в воде ежедневно, со временем полного цикла 24 часа.

Как дышат аквариумные рыбки — презентация к уроку окружающий мир


Презентация на тему: Как дышат аквариумные рыбки

Скачать эту презентацию

Скачать эту презентацию

Описание слайда:

Список литературы Аквариумные рыбки / сост. И. Г. Иерусалимский. – Ростов н/Д, 2000 Детская иллюстрированная энциклопедия / под ред. Е. Мирской. – М., 1996 Дольник, В. Р. Зоология для всех : рыбы / В. Р. Дольник, М. А. Козлов. – М., 1997 Коу, Д. Рыбы / под ред. Е. Б. Аузан. – М., 1994 Марковская, М. М. Уголок природы в детском саду / М. М. Марковская. – М., 1989 Энциклопедия для детей : домашние питомцы. – М., 2008

Как противостоять опасному снижению уровня кислорода и гибели рыбы?

К сожалению, если уровень кислорода уже снизился и начался процесс гибели рыбы, то помочь им уже вряд ли можно. Однако, надежно застраховаться от подобных инцидентов в будущем можно, обеспечив водоем системой искусственной подачи воздуха или кислорода (аэрации).

Система подачи кислорода состоит из генератора кислорода, датчика содержания кислорода в воде (избыточное содержание кислорода также вредно для рыбы, как и его недостаток), дозатора, системы шлангов и диффузоров (устройств, создающих микропузырьки, лучше всего растворяющиеся в воде).

Как альтернативный метод посредственной подаче кислорода в пруд и его там растворения, можно использовать имеющиеся на рынке системы насыщения кислородом воды, устанавливаемые в помещении, в которые вода из водоема подается насосом. Работая при избыточном давлении, подобные системы позволяют достигать значительно большей степени насыщения воды кислородом, чем это возможно при обычных условиях — вернувшись в водоем, такая вода смешается с бедной кислородом водой, не побывавшей в установке, создав оптимальную концентрацию газа (подавать перенасыщенную O2 воду следует одновременно в разные точки пруда).

Как рыбы дышат?

Как рыбы дышат?

Ни одно животное не может жить без кислорода. Он есть в воздухе и растворен в воде. Наземные позвоночные дышат кислородом воздуха; их орган дыхания — легкие. Рыбы добывают кислород из воды, для этого у них есть жабры.

Рыба дышит, набирая воду в рот. Через глотку, в которой есть ряды парных отверстий — жаберные щели, вода поступает к расположенным по обе стороны головы жабрам и, омывая их, вытекает из-под жаберной крышки. При этом растворенный в ней кислород через тончайшие покровы жаберных лепестков, пронизанные кровеносными капиллярами, проникает в кровь, а кровеносная система доставляет кислород в клетки. На воздухе у рыбы наступает удушье, как только жаберные лепестки подсыхают и становятся не проницаемыми для кислорода.

Когда рыбы дышат, они «вдыхают» и «выдыхают» не воздух, как люди, а воду. Понаблюдайте за рыбкой в аквариуме: ее рот и жаберные крышки то открываются, то закрываются, обеспечивая организм свежим водным раствором кислорода.

Однако из этого общего правила есть исключение. В Африке, Южной Америке и Австралии обитают двоякодышащие рыбы, которые дышат не только жабрами, но и плавательным пузырем, соединенным протоком с глоткой. Впрочем, строением их ячеистый плавательный пузырь мало чем отличается от настоящих легких.

У большинства современных видов это даже парный орган, как у всех высших позвоночных. Двоякодышащие рыбы втягивают воздух в «легкие» ноздрями при закрытом рте, как и все наземные позвоночные, но, кроме того, они могут дышать и жабрами, как рыбы. Все они — обитатели пресных водоемов, которые в сухой период года частично или полностью пересыхают.

И протоптеры, и южноамериканские чешуйчатники из бассейна Амазонки во время спячки дышат воздухом. Австралийский рогозуб не впадает в спячку и выживает, если от его водоема остается хотя бы зловонная лужа. Даже тогда он, дыша своим непарным «легким», чувствует себя хорошо, но совсем без воды быстро погибает.

Двоякодышащие питаются беспозвоночными, рыбами и земноводными. Нерестятся они в период дождей.

Прежде ученые считали, что наземные позвоночные произошли от древних двоякодышащих. Но теперь твердо установлено, что связующим звеном между рыбами и земноводными были животные из класса почти полностью вымерших кистеперых рыб, а двоякодышащие, тоже вымершие, кроме современных шести видов, — это боковая, тупиковая ветвь эволюции.

Кислород — это название химического элемента и название простого вещества. химия пж срочно . я на контрольной хелп ми плиз какое из значений мы имеем в виду, когда говорим: а) молекула воды состоит из атомов водорода и кислорода, б) рыбы дышат растворенным в воде кислородом? —

Кислород — это название химического элемента и название простого вещества.
Химия пж срочно . Я на контрольной хелп ми плиз

Какое из значений мы имеем в виду, когда говорим:

а) молекула воды состоит из атомов водорода и кислорода,

б) рыбы дышат растворенным в воде кислородом?

Костные рыбы

Костные рыбы — процветающий класс, весьма многочисленный: к ним относятся около 95% современных рыб. Сюда входят
важнейшие подклассы, которые мы разберем: хрящекостные, двоякодышащие и кистеперые рыбы.


Широко известны основные отряды класса костных рыб:

  • Осетрообразные — осетр, стерлядь, белуга
  • Карпообразные — карась, сазан, лещ, толстолобик
  • Лососеобразные — форель, лосось, семга
  • Трескообразные — треска, минтай, хек
  • Окунеобразные — окунь, судак, скумбрия, ставрида

Для большинства костных рыб характерен костный скелет, наличие жаберных крышек, прикрывающих жабры.
Жаберные лепестки расположены непосредственно на жаберных дугах, имеется плавательный пузырь. Оплодотворение
наружное.

Большинство видов костных рыб (90%) относятся к костистым рыбам. Для большей части костистых рыб характерно непрямое развитие (с метаморфозом).


Данный класс будет рассмотрен нами на примере типичного представителя — речного окуня.

  • Покровы, опорно-двигательная система
  • Форма тела обтекаемая, рыбообразная, за счет чего снижается трение о воду. Поверхность тела покрыта налегающими друг на друга
    (подобно черепице) чешуйками.

    У большинства видов чешуя ктеноидная (от греч. ktéis — гребень и éidos — вид) —
    снабжена зубцами или шипами, или циклоидная (от греч. kykloeides — кругообразный, круглый) — с гладким закругленным
    задним краем.

    В коже находится множество желез, которые секретируют слизь, покрывающую все тело рыбы, благодаря чему снижается трение
    о воду. Из-за слизи пойманную рыбу тяжело удержать в руках, она выскальзывает.

    Плавники — органы движения рыб. Плавники бывают как парные (грудные, брюшные), так и непарные (спинной, хвостовой, анальный).

    Череп — вместилище головного мозга, окружает его со всех сторон. Характерно наличие рострума
    (от лат. rostrum — клюв) — передней вытянутой части черепа рыб.

    Позвоночник состоит из двух отделов: туловищного и хвостового. В центре каждого позвонка имеется отверстие. Прилегая друг к другу, отверстия
    позвонков вместе соединяются в единый спинномозговой канал, в котором лежит спинной мозг.

    Скелет грудных плавников соединен с позвоночником костями плечевого пояса, в отличие от скелета брюшных плавников,
    который не сочленяется с позвоночником. Имеются жаберные крышки, снаружи прикрывающие жаберные щели (у хрящевых
    рыб жаберные крышки отсутствовали, 5 жаберных щелей открывались каждая в отдельности наружу.)

    Полость тела вторичная (целом).

    Мышечная система сегментируется, что выражается в возникновении отдельных (дифференцированных) мышечных пучков. Наиболее ярким примером
    дифференцировки являются мышцы ротового аппарата и парных плавников.

  • Пищеварительная система
  • Состоит из ротовой полости, глотки, продолжающейся в пищевод, желудка, толстого и тонкого кишечника. У многих рыб в ротовой
    полости имеются язык и острые зубы, расположенные на челюстях. Зубы предназначены не для механического измельчения пищи, а в основном для
    схватывания и удержания добычи. Слюнные железы отсутствуют, имеются вкусовые рецепторы.

    В просвет тонкой кишки рыб открываются протоки пищеварительных желез, печени и поджелудочной железы, а также желчного пузыря.
    Спиральный клапан в кишечнике (характерный для хрящевых рыб) отсутствует, общая площадь всасывания увеличивается за
    счет слепо оканчивающихся выростов кишечника — пилорических придатков.

  • Дыхательная система
  • Глотка тесно связано не только с пищеварительной, но и с дыхательной системой: здесь располагается жаберный аппарат
    рыб. С помощью жабр они приспособились забирать из воды растворенный в ней кислород и насыщать им кровь, откуда кислород
    поступает ко внутренним органам и тканям.

    Процесс дыхания осуществляется благодаря тому, что вода через ротовое отверстие попадает в глотку. Вследствие движений
    жаберной крышки вода из ротоглоточной полости втягивается в боковую жаберную полость, омывая жабры. В результате газообмена
    в кровь рыбы поступает кислород, а углекислый газ покидает ее и растворяется в воде.

    Жабры состоят из жаберной дуги, на которой расположены жаберные тычинки и лепестки. Жаберные тычинки направлены в сторону
    ротоглоточной полости и препятствуют проникновению частиц пищи в жабры (цедильная функция). Жаберные лепестки направлены
    наружу и оплетены густой сетью кровеносных сосудов — капилляров, в которых и происходит газообмен.

  • Кровеносная система
  • Как и хрящевые, костные рыбы имеют один круг кровообращения. Сердце двухкамерное, состоит из одного предсердия и одного желудочка.
    Запомните, что в сердце у рыб кровь венозная. Она накачивается сердцем в жабры, где происходит ее насыщение кислородом,
    после чего кровь становится артериальной.

    Артериальная кровь направляется к внутренним органам и тканям, движется кровь внутри сосудов: кровеносная система
    замкнутого типа.

  • Выделительная система
  • Состоит из парных лентовидных туловищных почек (мезонефрос, или первичная почка.) Располагаются они по
    бокам туловища. От почек начинаются мочеточники, сливающиеся между собой и образующие расширение — мочевой пузырь.

    Моча, содержащая побочные продукты обмена веществ, выводится из организма рыбы через анальное отверстие у самок, через мочеполовое
    отверстие — у самцов .

  • Нервная система
  • У всех хордовых нервная система трубчатого типа. Головной мозг состоит из продолговатого, среднего мозга, мозжечка, промежуточного и переднего мозга.

    Развитие одних и тех же отделов у разных классов хордовых неодинаково, что мы с вами отчетливо увидим по мере изучения данного
    раздела. Я рекомендую вам обратить на данную тему особое внимание.

    Относительно других классов хордовых головной мозг у рыб слабо развит: кора переднего мозга
    отсутствует, вместо нее поверхность мозга покрыта эпителием. Наибольшего развития достигает средний мозг — главный координирующий
    центр.

    Также хорошо выражен (развит) мозжечок, который отвечает за координацию движений и ориентацию тела в пространстве. Это связано
    со сложными перемещениями рыбы, которая «парит как птица» только не в воздушной, а в водной среде. От головного мозга берут
    начало 10 пар черепно-мозговых нервов.

    Органы чувств рыбы представлены особым образованием — боковой линией, тянущейся в виде канала вдоль всего тела с обоих боков. Чувствительные
    клетки (невромасты) органа боковой линии реагируют на изменения направления и скорости тока воды вблизи рыбы. С помощью нее рыба
    чувствует направление и скорость течения воды.

    У рыб впервые возникает специализированный орган слуха — внутреннее ухо. С помощью него они способны различать звуки,
    ориентируясь в водной среде. Состоит внутреннее ухо из трех полукружных канальцев, верхнего и нижнего мешочков. Иногда
    внутреннее ухо соединяется с плавательным пузырем (сомовые, карповые), за счет чего слух у таких рыб более развит.

    Органы зрения приспособлены к водной среде: хрусталик имеет шарообразную форму. Роговица плоская, аккомодация (настройка глаза на наилучшее видение объекта) происходит только благодаря перемещению хрусталика.

    Рыбы хорошо видят лишь на близком расстоянии. Имеются органы вкуса на коже и нижней челюсти, а также органы обоняния,
    открывающиеся в ротовую полость.

  • Половая система
  • Рыбы раздельнополы. Половые железы самцов — семенники, самок — единственный
    яичник. Оплодотворение наружное, происходит в воде: самка выметывает икру (яйцеклетки), а самец выделяет в воду сперматозоиды,
    которые сливаются с яйцеклетками. С течением времени из икры развиваются молодые особи.

    Развитие у большинства рыб (костистые рыбы) непрямое, с метаморфозом. Запомните, что процесс выметывания икры и ее последующего оплодотворения называется
    нерест, он носит сезонный характер. У пресноводных рыб нерест происходит весной, в это время строго запрещена ловля рыбы.

Могут ли рыбы и другие морские животные утонуть

Люди не могут жить в воде хотя бы потому, что не могут дышать там кислородом. Но что насчет рыб и других морских животных? Могут ли они задохнуться и утонуть?

По данным Всемирной организации здравоохранения, ежегодно тонет около 236 000 человек. Люди не единственные животные, которые тонут — собаки, змеи, птицы и многие другие виды также умирают, оказываясь в воде без шанса выбраться из нее. Но как быть с рыбами и другими морскими животными? Могут ли животные, живущие в воде, также задыхаться в ней?

Большинство рыб дышат за счет кислорода, растворенного в воде, которая проходит через их жабры. Но если жабры повреждены и не могут пропускать воду, рыба может задохнуться. Технически рыбы не тонут, потому что не вдыхают воду, а пропускают ее через жабры, однако они умирают от недостатка кислорода. Но рыболовные снасти  могут повредить жабры. Также причиной этого могут быть заболевания. Патогенные микроорганизмы, в основном бактерии, могут прикрепляться к жабрам и размножаться на них, выделяя при этом соединения, которые в конечном итоге блокируют функции этих органов.

Хотя некоторые рыбы могут перекачивать воду через жабры в состоянии покоя, другие должны постоянно плавать, чтобы своим движением обеспечивать поток воды через эти органы. Если такие животные в ловушку, например, в рыболовную сеть, они могут застрять там и задохнуться. Акулам нужны плавники, чтобы плавать. Некоторые рыбаки ловят акул и срезают их плавники для употребления в пищу, а затем бросают акулу обратно в воду, так как больше в животном нет ничего ценного.

Это не только жестоко, но еще и незаконно. Акула не может плавать, когда ее бросают обратно в воду, поэтому она будет съедена хищниками, умрет от голода или задохнется. Другие морские животные, такие как черепахи и дельфины, получают воздух так же, как и мы — они дышат им, поднимаясь на поверхность. Если из-за запутывания, например, в снастях, животное не сможет подняться на поверхность, оно умрет.

В некоторых частях океана может наблюдаться дефицит растворенного кислорода — его оказывается просто недостаточно для жизни рыб. Это происходит из-за одновременного цветения большого количества планктона, который находится в среде с большим количеством питательных веществ. Планктон расходует весь кислород за короткий промежуток времени, в результате чего рыба в этом районе задыхается.

По материалам Live Science.

Плавательный пузырь

Этот орган характерен исключительно для костных рыб: у хрящевых рыб (акулы, скаты) он отсутствует. Плавательный пузырь представляет
собой воздушный мешок, заполненный смесью газов: азотом, кислородом, углекислым газом.

Он выполняет ряд важнейших функций:

  • Гидростатическую — помогает занять рыбе в толще воды определенное положение. Так при расширении пузыря рыба
    всплывает, а при его уменьшении — опускается на дно.
  • Дыхательную — способен выполнять функцию легких
  • Барорецепторную — воспринимает изменения давления
  • Акустическую — воспринимает звуки, играет роль аналогичную уху

При заполнении газом пузырь расширяется: это меняет удельный вес рыбы, он понижается и рыба всплывает. Обратная схема
происходит при уменьшении пузыря. Но откуда появляется газ, которым наполняется пузырь, если рыба обитает в воде?
Отвечая на этот вопрос, отметим, что все рыбы делятся на два типа: открытопузырные и закрытопузырные.

У открытопузырных рыб плавательный пузырь сообщается с пищеварительной системой. Они в течение всей жизни поднимаются к
поверхности воды и заглатывают воздух, по мере необходимости они могут освобождаться от газов, выдавливая их через глотку, а затем рот
в окружающую среду. К таким рыбам относятся сельдеобразные, щукообразные, карпообразные, двоякодышащие.

Закрытопузырные рыбы имеют пузырь, не сообщающийся с пищеварительной трубкой. Газы в него поступают благодаря газовой секреции:
они переходят из растворенного (в крови) состояния в газообразное, заполняя пузырь. Когда пузырь уменьшается газы вновь растворяются в крови,
возвращаясь в кровеносное русло. К таким рыбам относятся: трескообразные, окунеобразные, кефалеобразные.

Роль кислорода в жизнедеятельности рыб – моя ферма онлайн — фермерский портал о сельском деле

Все рыбы дышат растворенным в воде кислородом, поэтому его содержание для них имеет решающее значение. Дышать водным животным значительно тяжелее и не только потому, что в воде в 21 раз меньше кислорода, но и потому, что вода плотнее воздуха в 800 раз.
Пелагические, речные и холодолюбивые рыбы более требовательны к кислороду, чем донные.
Кислород необходим рыбам для обеспечения аэробного энергообмена в индивидуальном развитии, и они могут обходиться без него самое короткое время только на ранних стадиях. Гликолиз у рыб чаще всего имеет место в зрелых половых клетках и у эмбрионов, т.е. в самом начале становления новых организмов.

Роль кислорода в жизнедеятельности рыб

В подавляющем большинстве рыбы используют кислород, растворенный в воде, и лишь некоторые виды способны дополнительно использовать атмосферный кислород .
По отношению к кислороду рыб делят на следующие группы:
нуждающиеся в высоком содержании кислорода (7-12 мг/л), при снижении его содержания до 5-6 мг/л дыхание невозможно (форели, сиги);
нуждающиеся в высоком содержании кислорода (5-8 мг/л), но выдерживающих его уменьшение до 5 мг/л (многочисленная группа пресноводных рыб: хариус, подуст, пескарь, налим);
менее требовательные к содержанию кислорода, легко переносящие его уменьшение до 5 мг/л (окунь, карп, плотва, щука);
довольствующиеся содержанием кислорода в 2,0-0,5 мг/л (линь, сазан, карась).
Морские рыбы более чувствительны к понижению содержания кислорода, чем речные, и задыхаются при уменьшении его содержания до 60-70% нормы (Котляр, 2007).
Потребление кислорода рыбами зависит от вида, возраста, подвижности, плотности посадки, физиологического состояния и солености воды.
Молодь рыб более чувствительна к содержанию кислорода, чем старшие возрастные группы.
Подвижные рыбы больше потребляют кислорода, чем малоподвижные.
Перед нерестом потребление кислорода рыбами возрастает на 23-30% по сравнению с другими периодами.
В холодной воде кислорода растворяется больше, чем в теплой, следовательно, при низких температурах рыба нуждается в меньшем количестве гемоглобина.
Рыбам вреден не только недостаток кислорода, но и его избыток который вызывает анемию и удушье.
Обогащение воды кислородом происходит в основном двумя путями: продуцированием кислорода фтосинтезирующими растениями и поступлением его из атмосферы. Расходуется кислород на обеспечение процессов жизнедеятельности гидробионтов и окисление органических и минеральных веществ. Следовательно, любые воздействия на водоем, которые снижающие продуцирование кислорода или увеличивающие его расход, могут принести к нарушению кислородного режима водоема, к возникновению в нем кратковременного или длительного дефицита.
Даже в нормальных условиях концентрация растворенного кислорода в пресных водоемах претерпевает значительные изменения в зависимости от интенсивности фотосинтеза и степени насыщения воды воздухом. В теплых поверхностных слоях, где фотосинтез идет особенно интенсивно, концентрация кислорода, как правило, выше, чем в более глубоких слоях. В морях и океанах, где перемешивание более эффективно, концентрация кислорода и углекислого газа более постоянна, чем в пресных водоемах.
Существенное влияние на уровень насыщения воды кислородом оказывает температура, поскольку с ее изменениями меняется величина растворимости кислорода. При прочих равных условиях растворимость кислорода в пресной воде выше, чем в соленой .
Помимо температуры и солености, на содержание кислорода в воде влияют сезонные и суточные изменения интенсивности фотосинтеза водных растений, особенности динамики потребления кислорода рыбами и другими водными животными, количество находящихся в воде легко окисляемых органических и минеральных веществ, сезонные особенности поглощения кислорода поверхностными слоями воды из воздуха. Вследствие этого в водоеме имеют место сезонные и суточные колебания концентрации растворенного в воде кислорода.
Кратковременные суточные изменения концентраций кислорода в воде представляют для рыб меньшую опасность, чем более длительные сезонные изменения. Зимой, вследствие образования ледяного покрова, препятствующего поступлению кислорода из воздуха, содержание растворенного в воде кислорода во многих водоемах снижается до 50–25% нормы по сравнению с летним периодом .
Дефицит кислорода приводит к массовым заморам рыб, нередко заморы возникают летом, главным образом ночью, из-за усиленного потребления кислорода водной растительностью или при массовом отмирании водорослей, чаше всего в слабо проточных водоемах.
Еще более существенное воздействие на кислородный режим водоемов оказывают загрязнения, поступающие с промышленными, сельскохозяйственными и бытовыми сточными водами. Большинство сточных вод, наряду с прямым токсическим воздействием на рыбу, вызывает резкий дефицит растворенного в воде кислорода, ведущий к обеднению кормовой базы и исчезновению оксифильных видов рыб (Котляр, 2007).
Около половины всех случаев массовой гибели рыб в загрязненных водоемах обусловлено резким дефицитом растворенного в воде кислорода, в связи с усиленным его расходом на окисление органических загрязнений.
Устойчивость рыб к дефициту кислорода определяется глубиной и длительностью наступивших изменений, температурой воды, ее химическим составом, видовыми и возрастными особенностями рыб.
Интенсивность потребления рыбой кислорода находится в прямой зависимости от температуры воды. При низких температурах потребность рыб в кислороде меньше, чем при высоких .
Чувствительность рыб к недостатку кислорода у холодолюбивых рыб значительно выше, чем у теплолюбивых (карповых, окуневых), а устойчивость, напротив, у теплолюбивых выше, чем у холодолюбивых, хотя разрыв между пороговым напряжением кислорода, вызывающим гибель и критическим, при котором наступает реальное угнетение дыхания и снижение потребление кислорода, чрезвычайно мал, что делает рыб более уязвимыми при резком изменении кислородного режима.
Рыбы способны выживать при концентрации кислорода ниже уровня нормального насыщения. Длительность выживания определяется степенью снижения содержания кислорода: чем существеннее отклонения, тем короче время выживания и, наоборот, чем менее значительны изменения концентрации кислорода, тем длительнее время выживания в дискомфортных условиях.
Хотя рыбы и способны переносить низкие концентрации кислорода более или менее длительный период не погибая, почти любое снижение содержания кислорода ниже уровня насыщения отрицательно влияет на рост и воспроизводство и другие физиологические функции рыб. Особенно велико отрицательное влияние пониженных концентраций кислорода на ранних этапах развития и роста рыб.
При недостаточном содержании кислорода возникают различные нарушения в строении зародышей рыб. При снижении кислорода в воде, мальки не могут заполнить плавательный пузырь воздухом, подняться на плав и начать питаться. При этом вылупившиеся личинки имеют меньшую массу и размеры в сравнении с личинками, развитие которых проходило при нормальном насыщении кислорода. Дальнейшее снижение концентрации кислорода заканчивается гибелью всех зародышей еще до завершения инкубации.
Низкое содержание кислорода в воде (0,5-3,0 мг/л) оказывает губительное действие на большинство видов рыб. При содержании в воде растворенного кислорода ниже 4 мг/л многие промысловые виды рыб испытывают затруднения в дыхании, а у лососевых и осетровых угнетение дыхания может наступить даже при концентрации кислорода ниже 6 мг/л.
Большую угрозу для жизни рыб представляют сточные воды, содержащие быстро и медленно окисляющиеся вещества, которые весьма интенсивно поглощают кислород, вызывая тем самым снижение его содержания в водоемах. Особенно опасны в этом отношении хозяйственные сточные воды и стоки пищевых предприятий (мясокомбинатов, сахарных и картофелекрахмальных, винокуренных, дрожжевых) и кожевенных заводов. Обилие органики животного и растительного происхождения в сточных водах этих предприятий, как правило, лишенных специфических токсических свойств, ведет к отложению их на дне и формированию донных отложений. Органические донные отложения со временем подвергаются процессам гниения, брожения и окисления. Эти процессы связаны с расходованием огромного количества кислорода, что приводит к резкому снижению его содержания в воде. Не меньшую опасность представляют органические сточные воды со специфическими токсическими свойствами, сбрасываемые кожевенными и целлюлозно-бумажными предприятиями. Они также вызывают дефицит кислорода за счет усиленного его потребления на биохимические и окислительные процессы.
Дефицит кислорода в загрязненном рыбохозяйственном водоеме может возникать вследствие угнетения фотосинтетических процессов в водоеме. Показательны в этом отношении загрязнения водоемов нефтью и нефтепродуктами.
Они образуют на поверхности водоема пленку, препятствующую нормальному газообмену между водой и атмосферой. Одна тонна нефти дает пленку в 10 км2.
Одновременно с этим нефтяная пленка затрудняет доступ солнечных лучей к фитопланктону, угнетая тем самым фотосинтез. Нефть и нефтепродукты подвергаются биохимическому окислению с интенсивным расходованием кислорода, ведущим к его дефициту в водоеме.
Нефть и нефтепродукты в количестве 15 мг/л абсолютно смертельны для всех живых существ, вызывая паралич дыхательных нервов.
Снижение фотосинтеза фитопланктоном и поверхностно-активные вещества (ПАВ), некоторые тяжелые металлы, многие пестициды.
Многие гербициды и альгициды оказывают угнетающее действие на процессы фотосинтеза низших и высших водных растений, снижая тем самым образование кислорода и его содержание в водоеме.
Нулевое содержание кислорода отмечается при поступлении гербицидов (монурона и диурона) в водоемы с большой биомассой макрофитов или при интенсивном развитии синезеленых водорослей. Массовое развитие синезеленых водорослей и их последующее отмирание и разложение, связанное с огромным расходом кислорода, также ведут к его дефициту в водоеме и могут быть одной из причин гибели рыб в цветущих водоемах.
Рыбам вреден и избыток кислорода. При перенасыщении воды газами, рыба также перенасыщается газами. При этом выделение газовых пузырьков происходит в тканях рыб. Пузырьки рвут кожу и плавники, выдавливают глаза, закупоривают кровеносные сосуды.
Перенасыщение воды кислородом наблюдается в водоемах при сильном освещении и мощном развитии зеленых водорослей.

Роль кислорода в жизнедеятельности рыб

Оцените статью
Кислород
Добавить комментарий