На что способен кислород — эффектные эксперименты ( видео)

На что способен кислород — эффектные эксперименты ( видео) Кислород

Описание изобретения к патенту

Изобретение относится к области ракетно-космической техники и может быть использовано при заправке жидким переохлажденным кислородом топливных баков ракетных двигательных установок, преимущественно баков окислителя космических разгонных блоков (РБ), используемых в качестве последней ступени ракетно-космических систем.

Известна система заправки переохлажденным кислородом бака окислителя космического разгонного блока, содержащая заправочную емкость с жидким кислородом, насос жидкого кислорода и азотный теплообменник-охладитель, подключенные заправочной магистралью к бортовому трубопроводу заправки бака окислителя РБ, а также магистраль отвода жидкого кислорода из бака окислителя в заправочную емкость при термостатировании (см.

Ракетно-космический комплекс, «Космодром», под ред. проф. А.П.Вольского, изд. МО СССР, 1977, с.158, рис.5.2). В известной системе заправки теплообменник-охладитель выполнен в виде криогенной емкости с жидким азотом, внутри которой размещен змеевик, включенный в магистраль заправки жидким кислородом бака окислителя РБ.

Недостатком известной системы заправки является низкая степень переохлаждения жидкого кислорода, величина которой ограничена значением температуры кипения жидкого азота при атмосферном давлении. Это существенно ухудшает эксплуатационные характеристики РБ.

Наиболее близкой к предложенной является система заправки переохлажденным кислородом бака окислителя космического разгонного блока, содержащая заправочную емкость с жидким кислородом, насос жидкого кислорода и теплообменник-охладитель, подключенные заправочной магистралью к бортовому трубопроводу заправки бака окислителя РБ, при этом теплообменник-охладитель выполнен в виде криогенной емкости с жидким криогенным хладагентом — жидким азотом, внутри которой размещен змеевик с жидким кислородом, подаваемым на заправку бака окислителя, а газовая часть криогенной емкости сообщена со всасывающим патрубком газового эжектора (патент РФ №2155147, кл.

B 64 G 5/00, F 17 C 6/00, 1999 г.). В данной системе заправки наличие в составе теплообменника-охладителя газового эжектора, подключенного к емкости с жидким азотом и выполняющего роль вакуумного насоса, дает возможность, за счет создания в емкости требуемой величины разрежения, снизить температуру жидкого азота и увеличить степень переохлаждения жидкого кислорода.

Недостатки данной системы связаны с тем, что переохлаждение жидкого кислорода происходит в процессе заправки бака окислителя РБ. При этом характер теплообмена между жидкими кислородом и азотом ограничивает возможную степень переохлаждения кислорода ввиду необходимости поддержания значительной разности температур в теплообменнике-охладителе.

Представляет также сложность обеспечение заданной температуры переохлаждения кислорода и регулирование величины ее, например, при изменении расхода кислорода через змеевик теплообменника-охладителя, что может привести к значительной погрешности при определении количества (массы) заправленного в бак окислителя РБ кислорода.

Кроме того, данная система заправки требует использования насоса жидкого кислорода большой мощности, поскольку заправочная магистраль жидкого кислорода и змеевик теплообменника-охладителя в данной системе представляют собой при заправке большое гидравлическое сопротивление.

Все это усложняет процесс заправки бака окислителя РБ переохлажденным кислородом, снижает технологичность процесса заправки, а также ухудшает эксплуатационные характеристики РБ.

Задачей, решаемой изобретением, является повышение технологичности процесса заправки переохлажденным кислородом бака окислителя разгонного блока, повышение степени переохлаждения жидкого кислорода, повышение точности заправки заданной массы кислорода в бак окислителя и, как следствие, улучшение эксплуатационных характеристик разгонного блока.

Решение поставленной задачи обеспечивается за счет того, что в системе заправки переохлажденным кислородом бака окислителя разгонного блока, содержащей криогенную заправочную емкость с жидким кислородом, насос жидкого кислорода и теплообменник-охладитель, подключенные заправочной магистралью жидкого кислорода к бортовому трубопроводу заправки бака окислителя, при этом теплообменник-охладитель выполнен в виде криогенной емкости с жидким криогенным хладагентом, газовая часть которой сообщена со всасывающим патрубком вакуумного насоса, в соответствии с изобретением, теплообменник-охладитель снабжен герметичным внутренним сосудом, установленным с зазором в криогенной емкости с жидким криогенным хладагентом с образованием герметичной полости с жидким криогенным хладагентом, при этом нижняя часть герметичного внутреннего сосуда через запорные клапаны сообщена с заправочной емкостью с жидким кислородом и с бортовым трубопроводом заправки бака окислителя, а верхняя часть герметичного внутреннего сосуда имеет дренажный патрубок и подключена к источнику подачи газа наддува.

Наличие в теплообменнике-охладителе герметичного внутреннего сосуда, нижняя часть которого через запорные клапаны сообщена с криогенной заправочной емкостью с жидким кислородом и с бортовым трубопроводом заправки бака окислителя, а верхняя часть — имеет дренажный патрубок и подключена к источнику подачи газа наддува, позволяет размещать в теплообменнике-охладителе полное количество заправляемого в бак жидкого кислорода, переохлаждать его в течение оптимального расчетного времени и затем выдавать переохлажденный кислород в бак окислителя.

При этом размещение внутреннего сосуда с жидким кислородом внутри полости криогенной емкости с жидким криогенным хладагентом, например азотом, газовая часть которой сообщена со всасывающим патрубком вакуумного насоса, обеспечивает оптимальный режим теплообмена между жидким криогенным хладагентом и кислородом и позволяет с высокой точностью получить требуемую температуру переохлаждения кислорода и повысить точность заправки заданной массы переохлажденного кислорода в бак окислителя.

Возможность переохлаждения жидкого кислорода перед заправкой им бака окислителя, а также большая поверхность теплообмена между кислородом и криогенным хладагентом позволяют существенно повысить степень переохлаждения кислорода. Увеличивается скорость заправки переохлажденным кислородом бака окислителя, отпадает необходимость регулирования температуры кислорода при изменении его расхода в процессе заправки, снижается потребная мощность насоса жидкого кислорода.

Конструкция предлагаемой системы заправки переохлажденным кислородом бака окислителя разгонного блока поясняется с помощью чертежа.

Система заправки включает в себя криогенную заправочную емкость 1 с жидким кислородом, заправочную магистраль жидкого кислорода 2 с насосом жидкого кислорода 3, подключенную через бортовое разъемное соединение 4 к бортовому трубопроводу заправки 5 бака окислителя 6 разгонного блока ракетно-космической системы, и теплообменник-охладитель 7.

Теплообменник-охладитель 7 выполнен в виде криогенной емкости 8, в которой с зазором размещен герметичный внутренний сосуд 9, установленный с образованием между ним и внутренней стенкой криогенной емкости 8 герметичной полости 10, подключенной трубопроводом 11 к криогенной емкости с жидким криогенным хладагентом, например жидким азотом (не показана).

В качестве жидкого криогенного хладагента может быть также использована бинарная смесь жидких азота и кислорода, позволяющая получить более низкую, чем жидкий азот, температуру переохлаждения кислорода в теплообменнике-охладителе 7. На внутренней поверхности внутреннего сосуда 9 теплообменника-охладителя 7 могут быть выполнены вертикальные теплопередающие ребра (не показаны).

Верхняя часть герметичной полости 10 теплообменника-охладителя 7 через трубопровод с клапаном 12 сообщена со всасывающим патрубком вакуумного насоса 13, в качестве которого может быть использован, например, газовый эжектор, и имеет дренажный патрубок 14.

Нижняя часть внутреннего сосуда 9 теплообменника-охладителя 7 патрубком 15 с запорным клапаном 16 подключена к заправочной магистрали жидкого кислорода 2, при этом через запорный клапан 17 она сообщена с заправочной емкостью 1, а через запорный клапан 18 — с бортовым трубопроводом заправки 5 бака окислителя 6 разгонного блока.

Верхняя часть герметичного внутреннего сосуда 9 имеет дренажный патрубок 19 и трубопроводом 20 с клапаном 21 подключена к источнику подачи газа наддува 22, например баллону со сжатым гелием. Во внутреннем сосуде 9 теплообменника-охладителя 7 установлены датчик температуры жидкого кислорода 23 и датчик уровня жидкого кислорода 24, в герметичной полости 10 теплообменника-охладителя 7 установлены датчик температуры жидкого криогенного хладагента 25 и датчик уровня жидкого криогенного хладагента 26.

Система функционирует следующим образом.

За заданное расчетное время до начала заправки бака окислителя 6 включается подача в теплообменник-охладитель 7 жидкого криогенного хладагента, например жидкого азота, по трубопроводу 11 из емкости с жидким азотом и производится захолаживание теплообменника-охладителя 7 и заполнение жидким азотом герметичной полости 10 теплообменника при отводе образующихся паров азота через дренажный патрубок 14.

При этом происходит охлаждение жидким азотом герметичного внутреннего сосуда 9, предварительно заполненного гелием. Заполнение жидким азотом герметичной полости 10 производится до требуемого расчетного уровня, контролируемого с помощью датчика уровня жидкого криогенного хладагента 26.

Затем включается подача в теплообменник-охладитель 7 жидкого кислорода, поступающего в герметичный внутренний сосуд 9 теплообменника из заправочной емкости 1 по заправочной магистрали жидкого кислорода 2 через открытые запорные клапаны 16 и 17 и патрубок 15.

Пары кислорода в смеси с гелием отводятся через дренажный патрубок 19. После заполнения внутреннего сосуда 9 теплообменника-охладителя 7 жидким кислородом до заданного уровня закрываются клапаны 16 и 17, выключается насос жидкого кислорода 3 и перекрывается дренажный патрубок 19.

При этом заданный уровень заполнения герметичного внутреннего сосуда 9 соответствует количеству кислорода в этом сосуде, достаточному для проведения заправки бака окислителя 6 разгонного блока. При достижении требуемого уровня жидкого азота (криогенного хладагента) в герметичной полости 10 теплообменника-охладителя 7 перекрывается дренажный патрубок 14 и с помощью вакуумного насоса 13 в герметичной полости 10 создается разрежение, обеспечивающее переохлаждение в ней жидкого азота до заданной температуры.

Эта температура жидкого азота устанавливается расчетно-экспериментальным путем в зависимости от требуемой температуры переохлаждения кислорода в теплообменнике-охладителе 7 с учетом характера теплообмена между азотом и кислородом и продолжительности процесса переохлаждения.

При необходимости получения более низкой температуры переохлаждения кислорода в теплообменнике-охладителе 7 в качестве жидкого криогенного хладагента используется бинарная криогенная смесь жидких азота и кислорода с более низкой температурой замерзания, чем жидкий азот.

При этом с увеличением доли кислорода в этой бинарной смеси температура ее замерзания уменьшается, что позволяет получить более низкие значения температуры кислорода, заправляемого в бак окислителя 6 разгонного блока. Контроль температуры жидкого кислорода и жидкого азота (криогенного хладагента) осуществляется с помощью датчиков температуры жидкого кислорода 23 и температуры жидкого криогенного хладагента 25.

Поддержание требуемого уровня жидкости в герметичной полости 10 теплообменника-охладителя 7 обеспечивается путем периодической подачи в эту полость жидкого криогенного хладагента по трубопроводу 11. По достижении за заданное расчетное время требуемой температуры кислорода в теплообменнике-охладителе 7 производится подача сжатого гелия в герметичный внутренний сосуд 9 от источника подачи газа наддува — баллона 22, открываются запорный клапан 16 и запорный клапан 18 на заправочной магистрали жидкого кислорода 2 и производится заправка переохлажденным кислородом бака окислителя 6 разгонного блока.

Перед заправкой бак окислителя 6 и бортовой трубопровод заправки 5 могут быть предварительно захоложены жидким кислородом, подаваемым в бортовой трубопровод заправки 5 из заправочной емкости 1 по заправочной магистрали жидкого кислорода 2 при открытых запорных клапанах 17 и 18, с последующим сливом кислорода в емкость 1.

Таким образом, предложенное техническое решение, за счет возможности предварительного переохлаждения всего потребного для заправки количества жидкого кислорода перед подачей его в бак окислителя 6, проводимого в оптимальном временном интервале, и возможности снижения разности температур между теплообменивающимися криогенными компонентами в теплообменнике-охладителе 7, позволяет повысить степень переохлаждения жидкого кислорода.

При этом повышается точность получения требуемой температуры переохлаждения кислорода и точность заправки в бак окислителя 6 заданной массы кислорода, что позволяет улучшить эксплуатационные характеристики разгонного блока. Повышается технологичность процесса заправки, существенно уменьшается потребная мощность и габариты насоса жидкого кислорода 3, снижается его стоимость.

Выяснено магнитное упорядочение оранжевого кислорода • новости науки

Известно, что всего существует шесть фаз твердого кислорода. Они отличаются друг от друга строением кристаллической решетки, электрическими и магнитными свойствами, а также цветом. В одной из них, так называемой δ-, или оранжевой (названной так по характерному цвету), фазе, существующей в диапазоне давлений 68 ГПа и температур 20240 К, не было ясности относительно магнитного упорядочения молекул твердого кислорода. Группа ученых из Франции, Швейцарии и США экспериментальным образом установила, что оранжевый кислород содержит три различных магнитных структуры, каждая из которых является антиферромагнитной.

В зависимости от поведения в магнитном поле почти все вещества условно можно разделить на четыре класса: диамагнетики, парамагнетики, ферромагнетики и антиферромагнетики. Количественной мерой такой классификации является безразмерный коэффициент — магнитная проницаемость, или отношение напряженности магнитного поля внутри материала к аналогичной величине вне его. Если магнитная проницаемость меньше единицы, то вещество считается диамагнетиком, если больше единицы, то парамагнетиком или антиферромагнетиком (о различии между ними будет сказано ниже), и наконец, когда магнитная проницаемость значительно больше 1, то такой материал именуют ферромагнетиком.

Такой разброс значений магнитной проницаемости объясняется внутренней структурой вещества, точнее — поведением внешних электронов его атомов. Из-за своего орбитального (вокруг ядра) и спинового (грубо говоря, вокруг своей оси) движения заряженные частицы, то есть электроны, генерируют микротоки. Это приводит к возникновению магнитного поля и, соответственно, магнитного момента атома, который можно интерпретировать в виде вектора. При включении внешнего магнитного поля магнитные векторы упорядочиваются — начинают «смотреть» в определенную сторону. В случае когда магнитные моменты атомов совпадают с направлением силовых линий внешнего поля, к его напряженности прибавляется, согласно принципу суперпозиции, суммарная напряженность поля, создаваемого упорядоченными атомами (эта ситуация характерна для парамагнетика). Если же моменты атомов приобретают направление, противоположное силовым линиям, то, согласно всё тому же принципу суперпозиции, знак плюс необходимо заменять знаком минус (в случае диамагнетика).

Для подавляющего большинства веществ значение магнитной проницаемости очень мало отличается от 1. Например, парамагнитная платина имеет магнитную проницаемость, равную 1,000265 — именно во столько раз усиливается внутри этого материала внешнее магнитное поле. Вода, являющаяся диамагнетиком, имеет магнитную проницаемость 0,999992, что означает ослабление поля в 1/0,999992 раз.

Что касается ферромагнетиков, то у них магнитные моменты атомов определенных областей материала или вообще всего его объема при температуре ниже температуры Кюри обладают выбранным направлением даже в отсутствие внешнего магнитного поля (рис. 1). При его включении магнитный порядок атомов лишь усиливается, что приводит к тому, что магнитная проницаемость принимает значения в сотни, тысячи, десятки тысяч, а то и больше, единиц (в зависимости от величины напряженности внешнего поля).

Так же устроено магнитное упорядочение и у антиферромагнетиков, только у них магнитные моменты ближайших соседних атомов направлены противоположно друг другу (рис. 1) при условии, что температура вещества не превосходиттемпературы Нееля. И хотя магнитная проницаемость антиферромагнетиков, как и парамагнетиков, мало отличается от единицы (поскольку противоположная ориентация магнитных моментов почти полностью компенсирует создаваемое атомами магнитное поле), по типу магнитного упорядочения такие вещества выделяют в отдельное «семейство».

В каждом из упомянутых четырех классов веществ обязательно найдется материал, который выделяется выдающимися магнитными свойствами и, как результат, является объектом пристального внимания со стороны исследователей. Например, графит имеет наименьшее значение магнитной проницаемости (меньше может быть только у сверхпроводников — у них 0). В числе ферромагнетиков с наибольшей магнитной проницаемостей — мю-металл (приблизительно 50 000). Среди парамагнетиков особое место занимает кислород. Будучи газом, O2 представляет собой ничем не примечательный парамагнетик. Но как только он становится жидким (температура ожижения равна 90 К), его магнитная проницаемость вырастает более чем в тысячу раз, достигая рекордного для парамагнитных веществ значения.

Самое интересное начинается, когда кислород переходит в твердое агрегатное состояние (при температуре 54 К). Многочисленные эксперименты, проведенные с твердым O2 за последние годы, указывают на существование у него в интервале давлений от 0 до приблизительно 130 ГПа (1,3 млн атмосфер) по крайней мере шести фаз (рис. 2 и 3), отличающихся друг от друга кристаллической решеткой, магнитными, электрическими свойствами и даже цветом. Их обозначают греческими буквами γ, β, α, δ, ε и ζ. Некоторые фазы твердого кислорода называют еще по характерному цвету их модификации. Например, вместо δ-O2 иногда говорят «оранжевый кислород», «красным кислородом» называют ε-фазу.

Если продолжить уменьшение температуры, сохраняя при этом нормальное атмосферное давление, то при 54 К образуется не просто твердый кислород, а парамагнитный γ-кислород. Дальнейшее охлаждение до 44 К переводит γ-O2 в «почти» антиферромагнитную β-фазу. Наконец, при 24 К рождается полностью антиферромагнитный α-кислород.

О магнитных свойствах оставшихся трех фаз (δ, ε и ζ), которые, как можно видеть на рис. 2 и 3, возникают только под значительным давлением, ученым известно немного. В частности, эксперименты однозначно указывают на отсутствие магнетизма в ε-кислороде (см.: Магнитный коллапс в твердом кислороде, «Элементы», 01.06.2005). Однако каким типом магнитного упорядочения обладает оранжевый (δ-) кислород, до настоящего времени оставалось загадкой. Несмотря на то что большинство исследователей склонялось к мысли, что δ-O2 — скорее всего антиферромагнетик, требовалось четкое подтверждение этого предположения.

В совместной статье ученых из Франции, Швейцарии и США Magnetic Ordering in Solid Oxygen up to Room Temperature, опубликованной в журнале Physical Review Letters, выяснена истинная магнитная природа оранжевого кислорода. Она оказалась сложнее, чем предполагалось ранее. Выяснилось, что δ-O2 содержит три различных магнитных структуры, каждая из которых является антиферромагнитной.

Несколько слов о методике и технике эксперимента. Поликристаллы оранжевого кислорода готовились при температуре 240 К посредством изотермического сжатия жидкого кислорода и последующего его «прохода» по фазовой диаграмме через γ- и β-фазу. Такая методика позволяла получать хорошие образцы для последующих магнитных измерений. Далее проводилось две серии экспериментов, показанных в виде пронумерованных линий со стрелками на фазовой диаграмме на рис. 3: при почти постоянном давлении происходило медленное (0,2 К/мин) охлаждение O2. Одновременно с этим осуществлялось облучение нейтронами оранжевого кислорода. Из данных по дифракции нейтронов на кристаллической решетке δ-O2 затем извлекались желанные сведения о магнитном порядке в изучаемом объекте.

Обработав экспериментальные данные, ученые пришли на первый взгляд к парадоксальному выводу: магнитный порядок в оранжевом кислороде содержит три разные и одновременно одинаковые по своей сути антиферромагнитные структуры. Поскольку они возникают в разных температурных интервалах, авторы статьи назвали их LTC (low temperature commensurate — соответствующий низкой температуре), ITC (intermediate temperature commensurate — соответствующий промежуточной температуре) и HTC (high temperature commensurate — соответствующий высокой температуре).

Чтобы разрешить возникший парадокс и понять, в чём же различие между этими тремя магнитными состояниями, необходимо сказать, что оранжевый кислород имеет слоеное внутреннее строение. Так вот, как показали эксперименты, каждый слой δ-кислорода имеет свой внутренний антиферромагнитный порядок, или свою ориентацию магнитных моментов молекул O2 (рис. 4). Именно чередование слоев с разным магнитным порядком и определяет различие между LTC-, ITC- и HTC-структурами.

Для наглядности обозначим буквой A антиферромагнитное расположение молекул δ-кислорода в какой-нибудь его кристаллической плоскости (слое). Мысленно заменим направление каждого магнитного момента в плоскости A на противоположное и обозначим новую антиферромагнитную ориентацию моментов в молекулярном слое буквой B. В такой терминологии магнитная структура LTC будет выглядеть так: (A–A–A)–(A–A–A)–…, ITC так: (A–B–B–A–A)–(A–B–B–A–A)–… и HTC так: (A–B–A)–(A–B–A)–…. Если теперь перпендикулярно молекулярным слоям провести воображаемую ось, то получится, что в LTC антиферромагнитные слои в направлении этой оси упорядочены в виде ферромагнитной структуры, поскольку все магнитные моменты O2 вдоль оси «смотрят» в одну сторону (см. рис. 4), в HTC — антиферромагнитной, а в ITC реализуется одновременно антиферромагнитное и ферромагнитное расположение слоев. При этом, напомним еще раз, в самих слоях магнитные моменты ориентированы антиферромагнитным образом.

Таким образом, описанная работа поставила жирную точку в довольно длительных дискуссиях об истинной магнитной природе δ-фазы твердого кислорода.

Источник: S. Klotz, Th. Strassle, A. L. Cornelius, J. Philippe, Th. Hansen. Magnetic Ordering in Solid Oxygen up to Room Temperature // Phys. Rev. Lett. 104, 115501 (2022).

Юрий Ерин

Горючие

В отличие от окислителей их можно разбить на несколько групп.

Углеводородные горючие.
Низкомолекулярные углеводороды.
Водород.
Гидразиновые топлива («вонючки»).

Группа углеводородов.Керосин

Условная формула C7,2107H13,2936
Молекулярный вес — 100 (усл.)
Плотность — 834,7 кг/м^3
Температура кипения — 423-588 К

Керосин является на самом деле смесью из различных углеводородов, поэтому появляются страшные дроби (в хим формуле) и «размазанная» температура кипения.Удобное высококипящее горючее. Используется давно и успешно в советских двигателях и в авиации.

Он так же требует осторожности в обращении: авария пассажирского самолётаСущественные плюсы: сравнительно недорог, освоен в производстве.

Пара керосин-кислород идеальна для первой ступени. Ее удельный импульс на земле 3283 м/с, пустотный 3475 м/с.Недостатки. Относительно малая плотность. Именно с целью повышения плотности были разработаны синтин (СССР) и RJ-5 (США). Синтез синтинаИмеет склонность к отложению смолистых осадков в магистралях и тракте охлаждения, что в последнем случае не лучшим образом сказывается на охлаждении. Удельный импульс мог бы быть и повыше. Керосиновые двигатели наиболее освоены в СССР.

Надо отметить, что в последнее время более корректным названием для горючих на основе керосина становится УВГ-«углеводородное горючее», т.к. от керосина, который жгли наши бабушки в лампах он ушел весьма далеко.
Нафтил-как пример.
image

Низкомолекулярные углеводородыМетан-CH4

Молекулярный вес — 16,043
Плотность — 420 кг/м^3
Температура кипения — 112 К

Рассматривается как перспективное топливо, в особенности в последнее время, как альтернатива керосину и водороду.
Недорог, распространен, устойчив, малотоксичен. По сравнению с водородом имеет более высокую температуру кипения, а удельный импульс в паре с кислородом выше, чем у керосина: ок. 3234 м/с на земле и ок. 3500 м/с в пустоте.
Неплохой охладитель.
Недостатки. Низкая плотность (вдвое ниже чем у керосина). При некоторых режимах горения может разлагаться с выделением углерода в твердой фазе, что может привести к падению импульса из-за двухфазности течения и резкому ухудшению режима охлаждения в камере из-за отложения сажи на стенках КС. Вероятно это наиболее перспективное горючее. В последнее время идут активные НИОКР в области его применения (наряду с пропаном и природным газом) даже в направлении модификации уже сущ. ЖРД (в частности такие работы были проведены над РД-0120).
Или-Raptor:
image

К этой же группе можно отнести пропан и природный газ. Основные их характеристики как горючих близки (за исключением большей плотности и более высокойтемпературы кипения), как и проблемы их использования.

Особняком среди горючих стоит —Водород-H2 (LH2-американское обозначение).Про: углерод, алюминий, берилий, магний, марганец-отдельная тема.

Молекулярный вес — 2,016
Плотность — 71 кг/м^3
Температура кипения — 20,46 К

Использование пары LOX-LH2 предложено еще Циолковским.

С точки зрения термодинамики идеальное рабочее тело как для самого ЖРД, так и для турбины ТНА. Отличный охладитель, при чем как в жидком, так и в газообразном состоянии. Последний факт позволяет не особо бояться кипения водорода в тракте охлаждения и использовать газифицированный таким образом водород для привода турбины.
Такая схема реализована в Aerojet Rocketdyne RL-10-просто шикарный (с инженерной точки зрения) движок:
image
image
Особенно эффективен с сопловым насадком из материала «Граурис». Высокий удельный импульс-в паре с кислородом 3840 м/с. (Из реально используемых это самый высокий показатель). Эти факторы обуславливают пристальный интерес к этому горючему. Экологически чист в паре с экологически чистыми окислителями. Распространен, практически неограниченные запасы. Освоен в производстве. Нетоксичен.
Однако есть очень много ложек дегтя в этой бочке мёда.
1. Чрезвычайно низкая плотность. Все видели огромные водородные баки Энергии и Шаттла. Из-за низкой плотности применим на верхних ступенях РН. Кроме того низкая плотность ставит непростую задачу для насосов — как правило насосы водорода многоступенчатые для того что бы обеспечить нужный массовый расход и при этом не кавитировать.
image
По этой же причине приходится ставить т.н. бустерные насосы сразу за заборным устройством в баках дабы облегчить жизнь основному ТНА. Насосы водорода для оптимальных режимов требуют также очень высокой частоты вращения.
image
2. Низкая температура. Перед заправкой необходимо проводить многочасовое захолаживание баков и всего тракта. Я, кстати, видел результаты цифрового моделирования подачи водорода в «теплый» бак. Весьма мучительное занятие — он то начинает заполнять, то испаряется и выталкивает все обратно. Также низкая температура кипения затрудняет хранение.
3. Жидкий водород обладает некоторыми свойствами газа-жидкость сжимаема. Это накладывает дополнительные трудности в проектировании магистралей, циклограммы работы, и особенно насосов.
4. Из-за своего малого молекулярного веса очень проницаем. Это означает, что герметизировать полости с водородом довольно трудно. Ну что, скажете вы, неразъемные соединения можно загерметизировать. Но дело даже не в соединениях трубопроводов. Проблема в том, что на ТНА все щели не замажешь герметиком — там применяются неконтактные уплотнения, особенно на высокооборотных ТНА. И тут эта проблема в купе с огнеопасностью смеси с кислородом встает довольно остро.
5. Большинство металлов имеют свойство поглощать водород — т.н. процесс наводораживания. При этом металл охрупчается, т.е. его св-ва как КМ ухудшаются (а тут еще и низкая температура). Поэтому зачастую поверхности, контактирующие с водородом защищают покрытием, как правило серебром. Это естественно не лучшим образом сказывается на технологичности и стоимости двигателя.
6. Пожароопастность и взрывоопасность. No comments.
image

Т.о. водород и привлекателен, и неприятен. Первый закон диалектики: «Единство и борьба противоположностей» /Georg Wilhelm Friedrich Hegel/Конструкторам хочется выжать из него все-использовать и как рабочее тело турбины, и как охладитель, поэтому как правило конструкции водородников получаются довольно монстроидальными (позже сравню простоту РД-253 и «сумасшедший дом» в лице SSME). Наиболее освоены водородные двигатели в США.Мы на 3-4 месте сейчас, после Европы, Японии и Китая.

Гидразиновые топлива («вонючки»)

Гидразин-N2H4

Молекулярный вес — 32,048
Плотность — 1010 кг/м^3
Температура кипения — 386,66 К

Довольно распространенное топливо.Долгохраним, и в этом его главное достоинство. Широко используется в ДУ КА и МБР, т.е. там, где долгохранимость имеет критическое значение. Имеет неплохой импульс с высококипящими окислителями-с азотным тетраоксидом 2860 м/с.

Несимметричный диметилгидразин (НДМГ)-H2N-N(CH3)2

Молекулярный вес — 60,102
Плотность — 785 кг/м^3
Температура кипения — 336 К

Широко используется на военных двигателях в следствие своей долгохранимости. Имеет более высокий импульс по сравнению с гидразином — с N2O4 3115 м/с на земле и 3291 м/с пустотный. Самовоспламенятся с азотными окислителями. Освоен в производстве в СССР.
Любимое топливо В.П.Глушко. Не любимое топливо моего ОЗК.
image
Могу написать целую статью про его гадкие свойства (на основе эксплуатации ЗРК С-200).
Используется как правило с азотными окислителями в ЖРД МБР и КА.
Недостатки: крайне токсичен.Такая же «вонючка». На порядок дороже керосина.
image

Это неправда! 15 мифов о питании, в которые мы до сих пор верим, а зря

Мед нельзя добавлять в чай, белому сахару лучше предпочесть коричневый, сырые овощи полезнее вареных, а ананас сжигает жир! То, что порой принимается за истину, далеко не всегда правдиво. Мы собрали 15 распространенных утверждений и попросили диетолога Аллу Манайкину прояснить ситуацию.


На что способен кислород — эффектные эксперименты ( видео)

Алла Манайкина,

врач, диетолог, автор

блога

в инстаграм


1. Кофе можно пить только до обеда, иначе будут проблемы со сном


— Организм каждого человека по-разному реагирует на кофе. Многое зависит от индивидуальной предрасположенности. Кому-то кофе помогает проснуться, а есть и те, на кого кофеин действует не хуже снотворного. Но в любом случае этот горячий напиток имеет быстрое действие. Например, если говорить о первом случае, бодрящий эффект длится от 30 минут до часа, а далее как раз следует второй этап — спад, когда появляется еще большая усталость.

На что способен кислород — эффектные эксперименты ( видео)

Дело в том, что кофеин по своей природе напоминает нейромедиатор аденозин, который оказывает тормозящее воздействие на ЦНС. Кофеин может связываться с теми же рецепторами и даже конкурирует с аденозином. На время он выигрывает схватку с нейромедиатором и тем самым не дает утомлению шанса проявить себя. Однако рано или поздно ему придется сдаться и после эффекта сдерживания усталости человека начинает в два раза больше «прибивать к земле».

Совершенно неважно, когда вы пьете кофе. Механизм работает одинаково в любом временном промежутке. Однако если вы ощущаете действительно активизирующий эффект от этого напитка, лучше все же не употреблять его перед сном. Что касается утра — все зависит только от вашего желания.

— Кстати, более длительным бодрящим эффектом обладает зеленый чай.


2. Мед нельзя добавлять в чай. Так он становится вредным


— Действительно, мед нежелательно класть в кипяток, так как при этом образуется оксиметилфурфурол. В принципе, он формируется при нагревании любых углеводных соединений.

На что способен кислород — эффектные эксперименты ( видео)

Однако, как правило, мед мы кладем не в кипящий, а в слегка остывший чай. И даже если это вещество и выделяется, то в ложке меда содержание его будет настолько ничтожным, что организм вообще этого не ощутит.

На что способен кислород — эффектные эксперименты ( видео)

Вывод: вреда особого нет, но и пользы тоже. Ведь такой способ разрушает некоторые полезные макроэлементы. Лучше скушайте ложечку-другую просто так. И, конечно, обращайте внимание на качество меда. Вот это действительно важно.


3. Коричневый сахар полезнее обычного


— Коричневый сахар — это, как правило, тростниковый сахар. И он тоже может быть белым.

На что способен кислород — эффектные эксперименты ( видео)

Все дело в степени очистки при получении. Коричневый так не рафинируют, и в нем остаются примеси, отсюда и цвет. Да, в нем чуть больше природных микроэлементов, но их количество настолько мало, что, в принципе, прочувствовать реальную разницу практически невозможно. Часто этих компонентов едва хватает для того, чтобы придать продукту оттенок, не более, да и калорийность белого и темного подсластителей одинаковая.

— Сахар — всегда сахар, в любом виде и оформлении. И его избыток негативно сказывается на здоровье.


4. Поваренная соль вредна для организма


— Соль должна присутствовать в рационе. Она участвует в ряде биохимических процессов в организме. ВОЗ рекомендует употреблять не более 2 г в день. Не стоит забывать, что соль содержится почти в каждом продукте из магазина. И это нужно учитывать.

На что способен кислород — эффектные эксперименты ( видео)

Утверждение, что поваренная соль вредна, слишком громкое. Скорее, просто принесет поменьше пользы. Я бы рекомендовала отдавать предпочтение гималайской или морской соли, так как в этих вариантах сохранено больше полезных микроэлементов и витаминов.

Время от времени не стоит пренебрегать и йодированной солью, ведь в нашей местности люди действительно испытывают недостаток йода.


5. Белый хлеб более калорийный, чем черный


— Здесь, как и в случае с сахаром, не в цвете дело. Внимательно читайте состав. Для приготовления белого хлеба часто используется мука высшего сорта, которую нельзя назвать полезной. Нередко люди считают, что серый хлеб полезнее, хотя часто его готовят из той же муки.

На что способен кислород — эффектные эксперименты ( видео)

Лучше всего выбирать продукты из цельнозерновой муки или муки второго сорта. Они будут иметь более низкий гликемический индекс и больше натуральных компонентов, заложенных природой.

— Простое правило: чем больше технологической обработки муки — тем меньше пользы.

Что касается калорийности — она, как правило, и у белого, и у черного хлеба одинаковая.


6. Сливочное масло наносит организму вред


— Я так не считаю. Это важный продукт, которому обязательно должно быть место как минимум в детском рационе, так как он богат витамином А. Каша с кусочком масла — прекрасный завтрак для малышей.

На что способен кислород — эффектные эксперименты ( видео)

Взрослым масло тоже нужно. Главное не переборщить, так как его высокую жирность никто не отменял. Избыток насыщенных жиров приводит к увеличению веса, атеросклерозу и другим проблемам. Соблюдайте меру. Примерно, 10-20 г масла в день будет вполне достаточно.

— Лучший процент жирности для масла — 82-83%. Если он меньше, значит, скорее всего, в таком продукте частично использован маргарин низкого качества.


7. Яйца повышают уровень «плохого» холестерина


— Не нужно во всех грехах обвинять этот продукт. Два-три яйца в день вреда организму не причинят, даже наоборот! Если холестерин высокий, нужно пересматривать весь рацион. Насыщенные жиры много где прячутся. Яйца не влияют на повышенный холестерин (если употреблять их в приведенной норме).

На что способен кислород — эффектные эксперименты ( видео)

Я знаю, что некоторые люди выкидывают желток, оставляя для себя лишь белок. Это неправильно. В желтке и витамин D, и витамин А, и другие важные компоненты. Яйцо само по себе идеально. Не нужно из него ничего изымать.

На что способен кислород — эффектные эксперименты ( видео)

Кстати, раньше даже яичную скорлупу измельчали в порошок и добавляли его в детские обеды. В скорлупе много кальция, и он прекрасно усваивается. Правда, я бы не рекомендовала поступать так с магазинными яйцами. А вот если десяток вам передала ваша бабушка из деревни — то почему бы и нет.


8. В красном мясе нет ничего полезного. Лучше заменить его на белое


— Ну, конечно же, нет. Это отличный источник белка, железа, витамина В12 и других полезных элементов. Но есть и вторая сторона медали. В красном мясе много насыщенных жиров. ВОЗ не рекомендует его для частого употребления.

На что способен кислород — эффектные эксперименты ( видео)

Доказано, что красное мясо относится к продуктам второй категории канцерогенности. К первой относится все обработанное мясо — колбасные изделия. Допустимая периодичность употребления красного мяса — раз в неделю.

Белое мясо и морепродукты действительно в этом отношении несут меньший риск. Тем не менее, утверждать, что в красном мясе нет абсолютно ничего полезного, ни в коем случае нельзя. 


9. Сырые овощи полезнее, чем термически обработанные


— Не стоит относить это утверждение ко всем овощам. Некоторые из них, например, морковь, тыква и любые другие овощи, которые содержат бета-каротиноиды, в вареном виде будут приносить больше пользы, так как те самые бета-каротиноиды лучше усвоятся организмом. Полезные компоненты белокочанной капусты тоже лучше усвоятся после термической обработки.

На что способен кислород — эффектные эксперименты ( видео)

Конечно, мы сейчас не говорим об интенсивной обработке. Крахмалистые овощи (например, картофель) и вовсе не стоит переваривать, так как полезный в сыром виде крахмал при слишком долгой варке преобразуется в простые углеводы. Лучше запекайте в мундире.

А вот свекла полезна в любом виде. Хотите — варите, хотите — ешьте сырой.


10. Любые фрукты прекрасно подходят для того, чтобы утолить голод


— И снова неточно. Для кого-то яблоко будет отличным перекусом, а у кого-то только еще больше разгуляется аппетит.

На что способен кислород — эффектные эксперименты ( видео)

Да, действительно фрукты лучше принимать отдельно от основного приема пищи, так как в одиночку они прекрасно усваиваются, а в сочетании с другими продуктами могут замедлять пищеварение, запуская в желудке процесс брожения. Поэтому лучше перекусывать фруктами за час до еды либо после 2 часов после приема пищи.

— Не забывайте, что в некоторых фруктах много сахара (манго, банан, виноград). Это важно для тех людей, которые хотят сбросить вес.

В любом случае фрукты — это отличный источник клетчатки и витаминов. Конечно, они куда полезнее различных сладких батончиков или печенек. Единственное, я не рекомендовала бы есть именно на голодный желудок цитрусовые и фрукты с ярко выраженной кислинкой, так как они достаточно агрессивно провоцируют выделение желудочного сока, и если пищи внутри нет, то в опасности оказываются стенки желудка.


  11. Ананас и сельдерей сжигают жир


— На сегодняшний день достоверных доказательств того, что фрукты или овощи могут сжигать жир, нет. Существует другое понятие — продукт с отрицательной калорийностью. То есть на переваривание таких продуктов организм тратит больше энергии, чем получает от него. Так говорят о сельдерее.

На что способен кислород — эффектные эксперименты ( видео)

В ананасе же содержится вещество бромелайн — протеолитический фермент, который ускоряет обмен веществ. Возможно, поэтому ходят подобные легенды.


12. Наш организм накапливает токсины и нуждается в регулярной чистке (детоксе)


— Не люблю слово «токсины», потому как его было бы правильнее использовать по отношению к отравлению некими промышленными отходами, например. Мы же говорим о продуктах собственного обмена. Печень, кожа и легкие помогают организму вывести все ненужное. Лучший способ очищения — перестать есть пищу, содержащую консерванты, химические добавки и усилители вкуса.

На что способен кислород — эффектные эксперименты ( видео)

Кушайте больше овощей, продуктов, содержащих клетчатку и пектины. Это будет содействовать постепенному и естественному выведению из организма так называемых токсинов.

На что способен кислород — эффектные эксперименты ( видео)

Надеяться, что, если вы сутки-двое «посидите» на свежевыжатых соках, то произойдет чудо, не стоит. Может быть, вы слегка разгрузите свою пищеварительную систему, она немного отдохнет. Но! Соки колоссально поднимают сахар в крови и провоцируют выработку желудочного сока. Польза здесь сомнительна. Лучше время от времени устраивать себе разгрузочные дни, когда вы просто не перегружаете организм тяжелыми продуктами.

— С особенной опаской я отношусь к водным диетам, когда больше недели люди не едят и не пьют ничего, кроме воды. Такие «новаторские методы» могут привести даже к летальному исходу.


13. В день нужно пить 2 литра воды


— У каждого норма своя. Оптимальный вариант — 30 мл воды на кг веса. Но она лишь рекомендуемая.

На что способен кислород — эффектные эксперименты ( видео)

Слушайте свой организм, старайтесь пить по требованию. Мучить себя и глотать воду через силу не стоит! Если решили увеличить привычный выпиваемый объем, делайте это постепенно, чтобы организм привык.


14. Во время еды нельзя пить


— Этот миф возник из-за предположения, что вода разбавляет желудочный сок, и это замедляет пищеварение. Но это не так. По сути, и супы тогда есть вредно.

На что способен кислород — эффектные эксперименты ( видео)

У каждого человека свои привычки. На самом деле нет ничего плохого в том, чтобы пить воду во время еды, особенно если пища очень сухая или твердая.


15. Суши и роллы — это диетические продукты


— Абсолютно нет. Рис и сливочный сыр делают эти блюда калорийными.

На что способен кислород — эффектные эксперименты ( видео)

Кроме того, если вы еще и налегаете на соевый соус (а в нем нередко много соли), жидкость в организме будет задерживаться и приятный вечерний ужин рискует с утра подарить вам легкую отечность.

Фото: Ирина Забирашко

Читайте также:


«Предпочтите пончику мороженое!» Диетолог о том, какие сладости не навредят фигуре

«Идеальный состав»! Вместе с фитнес-нутрициологом запасаемся полезными продуктами

Оцените статью
Кислород
Добавить комментарий