- 3. Взаимодействие с гидроксидом меди (II)
- Гидратация алкенов
- 1. Взаимодействие с галогеноводородами
- 2. Взаимодействие с аммиаком
- 3. Этерификация (образование сложных эфиров)
- 4. Взаимодействие с кислотами-гидроксидами
- Реакции замещения группы ОН
- 1. Внутримолекулярная дегидратация
- 2. Межмолекулярная дегидратация
- 1. Окисление оксидом меди (II)
- 2. Окисление кислородом в присутствии катализатора
- 4. Горение спиртов
- Промышленное получение метанола из «синтез-газа»
- Гидролиз жиров – способ получения многоатомных спиртов
- Горение
- Замещение гидроксильных групп
- Качественные реакции на спирты
- Кислотные свойства
- Классификация по строению углеводородного радикала
- Классификация по числу углеводородных радикалов у атома углерода при гидроксильной группе
- Номенклатура спиртов
- Окисление вторичных спиртов по оппенауэру
- Окисление первичных и вторичных спиртов с помощью дмсо
- Опыты по химии. одноатомные спирты | подготовка к цт и егэ по химии
- По числу гидроксильных групп:
- Получение формальдегида
- Применение дегидрирования спиртов
- Реакции замещения в ароматическом ядре
- Реакции окисления
- Реакции отщепления
- Строение спиртов и фенолов
- Структурная изомерия
- Химические свойства спиртов
- Химические свойства фенолов
3. Взаимодействие с гидроксидом меди (II)
Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).
Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется ярко-синий раствор гликолята меди: |
Гидратация алкенов
Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.
Например, при взаимодействии этилена с водой образуется этиловый спирт. |
Гидратация алкенов также протекает по ионному (электрофильному) механизму.
Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.
Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2. |
1. Взаимодействие с галогеноводородами
При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.
Например, этанол реагирует с бромоводородом. |
Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.
Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду: третичные > вторичные > первичные > CH3OH. |
Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.
Например, этиленгликоль реагирует с бромоводородом: |
2. Взаимодействие с аммиаком
Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.
Например, при взаимодействии этанола с аммиаком образуется этиламин. |
3. Этерификация (образование сложных эфиров)
Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.
Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты): |
Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.
Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля: |
4. Взаимодействие с кислотами-гидроксидами
Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.
Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат: |
Реакции замещения группы ОН
В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.
1. Внутримолекулярная дегидратация
При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.
Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен: |
2. Межмолекулярная дегидратация
При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.
Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир: |
1. Окисление оксидом меди (II)
Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.
Например, этанол окисляется оксидом меди до уксусного альдегида |
Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.
Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона |
Третичные спирты окисляются только в жестких условиях.
2. Окисление кислородом в присутствии катализатора
Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.
Например, при окислении пропанола-1 образуется пропаналь |
Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.
Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона |
Третичные спирты окисляются только в жестких условиях.
4. Горение спиртов
Образуются углекислый газ и вода и выделяется большое количество теплоты.
CnH2n 1ОН 3n/2O2 → nCO2 (n 1)H2O Q
Например, уравнение сгорания метанола: |
2CH3OH 3O2 = 2CO2 4H2O
Промышленное получение метанола из «синтез-газа»
Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.
Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:
CO 2H2 ⇄ CH3OH
Гидролиз жиров – способ получения многоатомных спиртов
Под действием кислоты жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.
Например: при гидролизе тристеарата глицерина образуется глицерин и стеариновая кислота |
При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.
Например: при щелочном гидролизе тристеарата глицерина образуется глицерин и соль стеариновой кислоты (стеарат) |
Горение
Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:
2СН3-ОН 3O2 = 2CO2 4H2O Q
Замещение гидроксильных групп
Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.
Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:
Качественные реакции на спирты
1. Окисление спиртов дихроматом (Na2Cr2O7) или перманганатом (КMnО4)
Качественная реакция на первичные и вторичные спирты!
В кислой среде
ОкислениеNa2Cr2O7
Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с раствором дихромата натрия. Для повышения скорости реакции ее проводят при нагревании, для создания кислой среды добавляют серную кислоту.
Первичные спирты окисляются дихроматом натрия до альдегидов.
Растворы дихроматов имеют оранжевый цвет и содержат хром в степени окисления 6. В кислой среде они переходят в растворы солей хрома в степени окисления 3 и приобретают зеленый цвет.
На изменении цвета соединений хрома также основана работа алкотестеров, когда пары спирта, содержащиеся в выдыхаемом водителем воздухе, восстанавливают дихромат в стеклянной трубочке.
Вторичные спирты окисляются дихроматом натрия до кетонов.
Третичные спирты в реакции с дихроматами не вступают.
Окисление KМnO4
Т.к. перманганат калия в кислой среде более сильный окислитель, чем дихромат, то окисление спирта не останавливается на стадии альдегида и продолжается дальше до карбоновой кислоты.
Раствор перманганата калия содержит марганец в степени окисления 7 и имеет розово-фиолетовый цвет. Если спирт взять в достаточном количестве, то произойдет обесцвечивание раствора. В кислой среде марганец перейдет в степень окисления 2.
Также как и дихроматом натрия, перманганатом калия вторичные спирты могут окисляться до кетонов. Далее возможна деструкция, т.е. разрушение органической молекулы и получение смеси веществ, которые не имеют практического применения.
В жёстких условиях с перманганатом калия третичные спирты окисляются с расщеплением связей С-С и образованием смеси веществ.
Метиловый спирт окисляется перманганатом калия до углекислого газа.
2. Окисление спиртов оксидом меди (II)
Качественная реакция на первичные спирты!
Первичные спирты окисляются оксидом меди (II) до альдегидов.
Видеоопыт «Окисление этилового спирта оксидом меди (II)»
Видеоопыт«Качественная реакция на этанол»
Вторичные спирты окисляются оксидом меди (II) до кетонов.
Третичные спирты оксидом меди (II) не окисляются.
Реакции неполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования.
Предельные одноатомные спирты
Кислотные свойства
1. Взаимодействие со щелочными и щелочноземельными металлами (Li, Na, K, Ca, Ba, Sr)
Реакции с разрывом связи О-Н
При действии на спирты активных металлов в безводной среде атом водорода гидроксильной группы замещается на металл:
Образующиеся соединения (соли спиртов) называются алкоголятами — производные метилового спирта – метилатами, производные этилового спирта – этилатами.
Видеоопыт «Взаимодействие спиртов с металлическим натрием»
Алкоголяты химически не стабильны и при действии воды они полностью гидролизуются с образованием исходного спирта и щелочи:
Эта реакция показывает, что спирты по сравнению с водой являются более слабыми кислотами (сильная кислота вытесняет слабую). При взаимодействии с растворами щелочей спирты не образуют алкоголяты.
Спирты не взаимодействуют с водными растворами щелочей.
Классификация по строению углеводородного радикала
- Предельные спирты – группа ОН соединена с предельным радикалом. Например, пропанол-1: СН3–СН2–СН2–ОН.
- Непредельные спирты – группа ОН соединена с непредельным радикалом. Например, алкенолы: СН2=СН–СН2–ОН.
Непредельные спирты, в которых гидроксильная группа соединена с атомом углерода при двойной связи (алкенолы), неустойчивы и изомеризуются в соответствующие карбонильные соединения.
- Ароматические спирты – содержат в радикале ароматическое кольцо, не связанное непосредственно с группой ОН. Например, бензиловый спирт.
Классификация по числу углеводородных радикалов у атома углерода при гидроксильной группе
- Первичные спирты – группа ОН соединена с первичным атомом углерода. Например, этанол СН3–СН2–ОН.
- Вторичные спирты – группа ОН соединена с вторичным атомом углерода. Например, пропанол-2: СН3–СН(СН3)–ОН.
- Третичные спирты – группа ОН соединена с третичным атомом углерода. Например, 2-метилпропанол-2: (СН3)3С–ОН.
- Метанол не относится ни к первичным, ни к вторичным, ни к третичным спиртам.
Номенклатура спиртов
- По систематической номенклатуре к названию углеводорода добавляют суффикс «-ОЛ» и цифру, указывающую номер атома углерода, к которому присоединена гидроксильная группа.
Нумерация ведется от ближайшего к ОН-группе конца цепи.
- По радикально-функциональной номенклатуре названия спиртов составляют от названий углеводородных радикалов, соединенных с группой ОН, с добавлением слова «спирт».
Например: СН3ОН – метиловый спирт, С2Н5ОН – этиловый спирт и т.д.
- В названиях многоатомных спиртов количество групп ОН указывают суффиксами -диол в при наличии двух ОН-групп, -триол при наличии трех ОН-групп и т.д. После этого добавляют номера атомов углерода, связанных с гидроксильными группами.
Например, пропандиол-1,2 (пропиленгликоль):
Окисление вторичных спиртов по оппенауэру
Эти методы окисления вытеснили старый громоздкий способ окисления вторичных спиртов по Оппенауэру, который заключается в нагревании спирта с алкоголятом алюминия в присутствии карбонильного соединения в качестве акцептора гидрид-ионов. Этот процесс обратим (обратная реакция называется восстановлением по Меервейну-Понндорфу-Верлею).
Окисление спиртов по Оппенауэру в теоретическом отношении представляет собой пример окислительного процесса с переносом гидрид-иона от восстановителя к окислителю в одну стадию, в то время, как в выше описанных процессах окисление спиртов осуществляется в несколько стадий с последовательным переносом одного или нескольких электронов [12], [25].
Окисление первичных и вторичных спиртов с помощью дмсо
В последние тридцать лет разработано несколько эффективных способов окисления первичных и вторичных спиртов с помощью ДМСО или комплексов ДМСО с электрофильными агентами. Тозилаты первичных спиртов, также как и бензилтозилаты, окисляются в альдегиды при нагревании в ДМСО в течение 10-30 минут при 120-150оС в присутствии гидрокарбоната натрия как слабого основания.
ДМСО в этой реакции выполняет роль нуклеофильного агента, который замещает тозилоксигруппу по обычному SN2 механизму с образованием алкоксисульфониевой соли. Катион алкоксисульфониевой соли далее подвергается окислительно-восстановительному элиминированию по механизму, аналогичному для окислительно-восстановительного элиминирования из сложных эфиров хромовой кислоты.
Слабый нуклеофильный агент ДМСО легко превращается в сильный электрофильный агент, который реагирует со спиртами уже ниже 0oС в мягких условиях. Необходимую активацию ДМСО проводят с помощью серного ангидрида, трифторуксусного ангидрида, N-хлорсукцинимида или N,N-дициклогексилкарбодиимида C6H11N=C=NC6H11 (ДЦГК).
Для окисления первичных и вторичных спиртов до альдегидов и кетонов в мягких условиях эффективен комплекс ДМСО с SO3, образующийся при взаимодействии пиридинсульфотриоксида с ДМСО.
SO3 в качестве электрофильной частицы может быть заменен трифторуксусным ангидридом или ДЦГК (реактив Пфитцера-Моффата). Этот реагент в настоящее время употребляется наиболее часто.
Пример окисления спиртов комплексами ДМСО:
Опыты по химии. одноатомные спирты | подготовка к цт и егэ по химии
Постановка опытов и текст – к.п.н. Павел Беспалов.
Физические свойства спиртов
Одноатомные спирты, содержащие в своем составе до десяти атомов углерода, в обычных условиях — жидкости. Спирты, в составе которых 11 атомов углерода и более — твердые тела. Этиловый, бутиловый и изоамиловый спирт – жидкости.
Посмотрим, как спирты растворяются в воде. В три пробирки нальем по нескольку миллилитров спиртов и прибавим к ним подкрашенную воду. Спирты имеют плотность меньше единицы, поэтому они образуют верхний слой. При взбалтывании пробирок происходит полное растворение этилового спирта, частично растворяется бутиловый спирт, почти не растворяется изоамиловый спирт. Краситель из водного раствора переходит в спирты. С повышением молекулярной массы и увеличением углеводородного радикала растворимость спиртов в воде уменьшается.
Оборудование: пробирки, штатив для пробирок, стаканы.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями.
Взаимодействие этилового спирта с бромоводородом
Спирты взаимодействуют с галогеноводородами. В прибор для получения галоидоалканов наливаем смесь этилового спирта с концентрированной серной кислотой. Прибавим к смеси вначале несколько капель воды, а затем – бромид натрия. В верхнюю часть прибора, холодильник, нальем воды и добавим кусочки льда. Нагреем колбу. Через некоторое время начинается реакция. Бромид натрия реагирует с серной кислотой с образованием бромоводорода.
NaBr H2SO4 = NaHSO4 HBr
Бромоводород реагирует с этиловым спиртом с образованием бромэтана.
HBr С2Н5ОН = C2H5Br H2O
Бромэтан — легкокипящая жидкость. Бромэтан испаряется, пары поступают в холодильник, где бромэтан конденсируется. Капли бромэтана падают в приемник. На дне приемника собирается тяжелая маслянистая жидкость – бромэтан.
Оборудование: прибор для получения галоидоалканов, штатив, шпатель, горелка, стакан, мерная пробирка
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и кислотами.
Взаимодействие этилового спирта с металлическим натрием
При взаимодействии спиртов с натрием образуются газообразный водород и соответствующие алкоголяты натрия. Приготовим пробирки с метиловым, этиловым и бутиловым спиртами. Опустим в пробирку с метиловым спиртом кусочек металлического натрия. Начинается энергичная реакция. Натрий плавится, выделяется водород.
2СН3ОН 2 Na = 2 CH3ONa H2
Опустим натрий в пробирку с этиловым спиртом. Реакция идет немного медленней. Выделяющийся водород можно поджечь. По окончании реакции выделим этилат натрия. Для этого опустим в пробирку стеклянную палочку и подержим ее над пламенем горелки. Избыток спирта испаряется. На палочке остается белый налет этилата натрия.
2С2Н5ОН 2 Na = 2 C2H5ONa H2
В пробирке с бутиловым спиртом реакция с натрием идет еще медленнее.
2С4Н9ОН 2 Na = 2 C4H9ONa H2
Итак, с удлинением и разветвлением углеводородного радикала скорость реакции спиртов с натрием уменьшается.
Оборудование: штатив для пробирок, пробирки, пинцет, скальпель, фильтровальная бумага.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и щелочными металлами.
Горение спиртов
Нальем понемногу этилового, бутилового и изоамилового спиртов в фарфоровые чашки. Поднесем к чашкам горящую лучину. Этиловый спирт быстро загорается и горит голубоватым, слабосветящимся пламенем. Бутиловый спирт горит светящимся пламенем. Труднее загорается изоамиловый спирт, он горит коптящим пламенем. С увеличением молекулярной массы одноатомных спиртов повышается температура кипения и возрастает светимость их пламени.
С2Н5ОН 3О2 = 2СО2 3 Н2О
С4Н9ОН 6О2 = 4СО2 5 Н2О
2С5Н11ОН 15О2 = 10СО2 12 Н2О
Оборудование: огнезащитная прокладка, фарфоровые чашки, лучина.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями.
Каталитическое окисление этанола
Окисление этилового спирта кислородом воздуха происходит очень легко в присутствии оксида хрома (III). В фарфоровую чашку поместим кусочек ваты, смоченный спиртом. Подожжем вату. Осторожно насыпаем на горящую вату оксид хрома. Пламя гаснет. Но оксид хрома начинает раскаляться. Реакция окисления спирта протекает с выделением энергии. Продукт реакции окисления спирта — уксусный альдегид.
2СН3-СН2-ОН О2 = 2CH3 —COH 2H2O
Оборудование: фарфоровая чашка, шпатель.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и концентрированными кислотами. После демонстрации осторожно разбавить содержимое чашки водой, нейтрализовать щелочью.
Качественная реакция на этанол
Чувствительной реакцией на этиловый спирт является так называемая йодоформная проба: образование характерного желтоватого осадка йодоформа при действии на спирт йода и щелочи. Этой реакцией можно установить наличие спирта в воде даже при концентрации 0,05%. Отберем пробу раствора и добавим раствор Люголя. Раствор Люголя содержит иод (1 часть иода, 2 части иодида калия, 17 частей стерильной дистиллированной воды). При охлаждении раствора появляется желтая взвесь йодоформа, при высоких концентрациях спирта выпадает желтый осадок йодоформа.
С2Н5ОН 6 NaОН 4 I2 = CHI3 HCOONa 5 NaI H2O
Оборудование: пробирки, зажим пробирочный, горелка.
Техника безопасности. Соблюдать правила работы с нагревательными приборами.
Окисление этанола (тест на алкоголь)
Реакцию окисления спиртов сильными окислителями используют для установления факта алкогольного опъянения.
Приготовим трубку для определения алкоголя. Для этого разотрем в ступке хромовый ангидрид (оксид хрома (VI)) с небольшим количеством серной кислоты. Получается паста красного цвета. Нанесем пастой полосу на стенках трубки. Трубку соединим с прибором, подающим смесь воздуха с парами этилового спирта. Через некоторое время красная полоса в трубке зеленеет. Спирт окисляется в уксусный альдегид, а окислитель оксид хрома превращается в сульфат хрома (III), имеющий зеленую окраску.
K2Cr2O7 3 C2H5OH 4 H2SO4 = 3 CH3COH Cr2(SO4)3 K2SO4 7H2O
Оборудование: фарфоровая чашка и ступка, трубка стеклянная, резиновые трубки, газометр или аспиратор
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями.
Окисление этилового спирта кристаллическим перманганатом калия
Очень энергично протекает реакция этилового спирта с перманганатом калия в присутствии концентрированной серной кислоты. В стеклянный цилиндр наливаем серную кислоту. Осторожно, по стенке приливаем этиловый спирт. Образуются два слоя жидкости. Сверху — этиловый спирт, снизу — серная кислота. В цилиндр бросаем немного кристаллического перманганата калия. Через некоторое время на границе раздела спирта и кислоты возникают вспышки и слышатся щелчки. При попадании кристаллов перманганата калия в серную кислоту образуется марганцевый ангидрид (оксид марганца (VII)) — очень сильный окислитель. Он взаимодействует с этиловым спиртом. При этом образуется уксусный альдегид.
СН3-СН2-ОН [О] = CH3 —COH H2O
Оборудование: цилиндр, шпатель.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и концентрированными кислотами. После демонстрации осторожно разбавить содержимое водой, нейтрализовать щелочью.
Окисление этилового спирта оксидом меди (II)
В прибор для окисления спиртов нальем немного этилового спирта. Присоединим к газоотводной трубке прибор для подачи воздуха. Раскалим в горелке медную спираль и поместим ее в прибор. Подадим в прибор ток воздуха. Медная спираль в приборе продолжает быть раскаленной, так как начинается окисление спирта. Продукт окисления спирта — уксусный альдегид.
СН3-СН2-ОН СuO = CH3 —COH Cu H2O
Альдегид обнаруживаем, пропуская через фуксинсернистую кислоту выходящие из прибора газы. Под действием альдегида фуксинсернистая кислота приобретает фиолетовую окраску. Покажем, что медная спираль раскалена. Извлечем спираль из прибора и поднесем к ней спичку. Спичка загорается. Мы убедились в том, что при окислении одноатомных спиртов образуются альдегиды.
Оборудование: прибор для окисления спирта, резиновые трубки, горелка, газометр или аспиратор.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и нагревательными приборами.
Окисление этилового спирта раствором перманганата калия
Спирты легко окисляются раствором перманганата калия. В пробирку с этиловым спиртом прильем немного подкисленного раствора перманганата калия. Осторожно подогреем пробирку. Раствор постепенно обесцвечивается. В данных условиях этиловый спирт окисляется, превращаясь в уксусный альдегид.
СН3-СН2-ОН [О] = CH3 —COH H2O
Оборудование: пробирки, штатив для пробирок.
Техника безопасности. Соблюдать правила работы с огнеопасными жидкостями и нагревательными приборами.
По числу гидроксильных групп:
- одноатомные спирты — содержат одну группу -ОН. Общая формула CnH2n 1OH или CnH2n 2O.
- двухатомные — содержат две группы ОН. Общая формула CnH2n(OH)2 или CnH2n 2O2.
- трехатомные спирты — содержат три группы ОН. Общая формула CnH2n-1(OH)3 или CnH2n 2O3.
Двухатомные спирты с двумя и тремя гидроксогруппами у одного атома углерода R‒CH(OH)2 или R-C(OH)3 неустойчивы, от них легко отрывается вода и образуется карбонильное соединение.
Получение формальдегида
1. Окисление метана
Формальдегид в промышленности можно получить окислением метана кислородом воздуха при высоких температурах с использованием катализатора:
2. Окисление метанола
Основной промышленный способ получения формальдегида – окисление метанола с использованием серебряного катализатора при температуре 6500С и атмосферном давлении:
Реакция происходит на раскаленной серебряной сетке, через которую проходят пары ментола, смешанные с воздухом. Реакция настолько экзотермична, что выделяющейся в ходе ее теплоты достаточно для того, чтобы поддерживать сетку в раскаленном состоянии.
В настоящее время разработан перспективный способ высокотемпературного окисления метанола с использованием железомолибденовых катализаторов:
Альдегиды и кетоны
Применение дегидрирования спиртов
Дегидрирования спиртов является важным промышленным методом синтеза альдегидов и кетонов, например формальдегида, ацетальдегида, ацетона. Эти продуты в больших объемах добывают как дегидрированием, так и окислительным дегидрированием на медном или серебряном катализаторе:
дегидроциклизацией бутан-1,4-диола на медном катализаторе при 250 $^circ$С с высокими выходами получают $γ$-бутиролактон:
Рисунок 11.
глиоксаль синтезируют в промышленности в условиях каталитического окислительного дегидрирования этиленгликоля при 300 $^circ$ С:
Рисунок 12.
полиолы более сложного строения, например, пентаэритрит, сахара в условиях каталитического дегидрирования.
Реакции замещения в ароматическом ядре
Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара-положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.
Реакции окисления
Для спиртов характерны реакции горения с образованием углекислого газа и воды, а также реакции окисления, приводящие к получению альдегидов, кетонов и карбоновых кислот.
В лабораторных условиях для окисления спиртов обычно используют подкисленные растворы перманганата или дихромата калия, оксид меди и т.д.
1. Горение (полное окисление)
Спирты горят на воздухе с выделением большого количества тепла. С увеличением массы углеводородного радикала – пламя становится всё более коптящим.
Видеоопыт «Горение спиртов»
При сгорании спиртов выделяется большое количество тепла:
Благодаря высокой экзотермичности реакции горения этанола, он считается перспективным и экологически чистым заменителем бензинового топлива в двигателях внутреннего сгорания. В этом случае энергия химических связей переходит в тепловую энергию, а затем в механическую, что позволяет двигаться автомобилям. В лабораторной практике этанол применяется как горючее для «спиртовок».
2. Неполное окисление
1). В присутствии окислителей [O] – K2Cr2O7 или KMnO4 спирты окисляются до карбонильных соединений:
Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.
При окислении вторичных спиртов образуются кетоны.
Например:
Видеоопыт «Окисление этилового спирта раствором перманганата калия»
Видеоопыт «Окисление этилового спирта кристаллическим перманганатом калия»
Видеоопыт «Каталитическое окисление этанола»
Видеоопыт «Окисление этанола (тест на алкоголь)»
Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).
Реакции отщепления
1. Дегидратация (отщепление воды)
Реакции с разрывом связи С-О
При действии на спирты водоотнимающих реагентов, например, концентрированной серной кислоты, происходит отщепление воды – дегидратация.
Она может протекать по двум направлениям: с участием одной молекулы спирта (внутримолекулярная дегидратация, приводящая к образованию алкенов) или с участием двух молекул спирта (межмолекулярная дегидратация, приводящая к получению простых эфиров).
При переходе от первичных спиртов к третичным увеличивается склонность к отщеплению воды и образованию алкенов и уменьшается способность образовывать простые эфиры.
а) Межмолекулярная дегидратация спиртов с образованием простых эфиров R-O-R’. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:
б) Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта:
Такие реакции отщепления называются реакциямиэлиминирования.
Первый член гомологического ряда алканолов – метанол СН3ОН – не вступает в реакции внутримолекулярной дегидратации.
Дегидратация вторичных и третичных спиртов происходит по правилу Зайцева:
2. Дегидрирование
Реакции с разрывомсвязей О-Н и С-Н
а) При дегидрировании первичных спиртов образуются альдегиды:
Реакция происходит при пропускании нагретых до 3000С паров спирта без доступа воздуха над металлическими катализаторами (Cu или металлы платиновой группы – Pd, Pt, Ni). Ni является типичным катализатором дегидрирования или гидрирования, т.е. отщепления или присоединения водорода.
В организме человека этот процесс происходит под действием (алкогольдегидрогеназы).
б) При дегидрировании вторичных спиртов образуются кетоны:
Третичные спирты не подвергаются дегидрированию.
Строение спиртов и фенолов
В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.
Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4). |
Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:
Атом кислорода в спиртах находится в состоянии sp3-гибридизации. |
В образовании химических связей с атомами C и H участвуют две 2sp3-гибридные орбитали, а еще две 2sp3-гибридные орбитали заняты неподеленными электронными парами атома кислорода.
Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108о.
Структурная изомерия
Для спиртов характерна структурная изомерия – изомерия углеродного скелета, изомерия положения гидроксильной группы и межклассовая изомерия.
Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.
Изомеры углеродного скелета характерна для спиртов, которые содержат не менее четырех атомов углерода.
Например. Формуле С4Н9ОН соответствуют четыре структурных изомера, из них два различаются строением углеродного скелета |
Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n 2О.
Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3 |
Этиловый спирт | Диметиловый эфир |
СН3–CH2–OH | CH3–O–CH3 |
Изомеры с различным положением группы ОН отличаются положением гидроксильной группы в молекуле. Такая изомерия характерна для спиртов, которые содержат три или больше атомов углерода.
Например. Пропанол-1 и пропанол-2 |
Химические свойства спиртов
Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.
Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).
Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ , на атоме углерода также частичный положительный заряд δ , а на атоме кислорода — частичный отрицательный заряд δ–.
Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.
С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.
Таким образом, для спиртов характерны следующие свойства:
|
1. Кислотные свойства
Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды. |
Химические свойства фенолов
https://www.youtube.com/watch?v=kursoteka.ruplayer
Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.