- Показатели давления воды на глубине
- Влияние глубины
- Зависимость двух физических показателей
- Формула для расчета
- Сколько составляет на различных глубоководных участках?
- Заключение
- Узнать давление на глубине 1, 5, 10 метров
- Расчет давления на глубине
- Исходные данные
- Пример расчета давления воды на глубине 10 метров
- Каждые 10 метров воды создают давление в 1 атмосферу
- Рекорды глубоководных погружений
- Погружения на рекордные глубины с аквалангом и без
- Опасности глубоководных погружений с аквалангом
- Расходование воздуха на глубине
- Кислородное отравление
- Азотный наркоз
- Кессонная болезнь
- Опасности фридайвинга
- Обжатие грудной клетки
- Гипоксия
- Обжим маски и барторавмы
- Подводя итоги
- Давление на глубине под водой
- Вы делаете это неправильно
- Способ 1 — По давлению столба жидкости
- Как влияет атмосферное давление?
- Что с ускорением свободного падения?
- А как влияет плотность воды?
- Матчасть
- Какое атмосферное давление под водой
- Давление под водой в морских глубинах
- Физические расчеты
- Как исследуют моря и океаны
- Исследования давления под водой на глубине
- Давление воды
- Влияние на здоровье человека
- Давление в море и морские животные
Показатели давления воды на глубине
Глубина оказывает прямое воздействие на давление воды. Между ними прямая зависимость. Данное значение рассчитывается по специальной формуле. На различных участках глубоководья указанная величина заметно отличается.
Рассмотрим в статье особенности расчет и составляющие формулы, а также отличается ли давление на участках с разной глубиной.
Влияние глубины
Чем глубже происходит погружение в водную толщу, тем больше становится ее сила. Глубина прямо влияет на увеличение давление. Это значение возрастает пропорционально.
Чем глубже, тем больше плотность водной толщи. С каждым последующим опусканием тела возникает все большая разница между внешним и внутренним водным давлением.
На поверхности действует атмосферное давление. При опускании в воду помимо него тела начинают испытывать еще и гидростатическое сдавливание.
Даже на мелководье на тело оказывается суммарное влияние, состоящее из атмосферного и гидростатического. При нырянии внешнее воздействие на тело возрастает. Возникает разница из-за увеличения плотности среды.
Зависимость двух физических показателей
С каждым последующим опусканием на 10 м воздействие становится больше на 1 атмосферу. Уже при погружении на 100 метров тела испытывают давление, соизмеримое с тем, что создается в паровом котле.
С погружением общее давление как на человека, так и на любой другой объект, возрастает. На 10 м оно становится больше вдвое.
Прирост давления на глубоководье неодинаков:
- На 10 м прирост составляет 100%.
- На 20 м он уже уменьшается вдвое (50%).
- На 40 он падает до 25%.
- На 60 он уже меньше 20% и составляет 17%.
В воде помимо атмосферного давления возникает еще гидростатический прессинг. Он также называется избыточным. При нахождении в воде любой объект будет испытывать уже сумму двух давлений: атмосферного и избыточного.
Зависимость двух величин напрямую прослеживается при изучении состояния человека, находящегося в условиях глубоководья. Если поместить человека в глубоководную среду, то он не сможет сделать полноценный вдох.
Возникшая разница между двумя давлениями, одно из которых оказывается на грудную клетку водой, а второе воздухом, что создается в легких, не позволит человеку нормально дышать. При большем погружении грудная клетка разорвется.
Формула для расчета
Данный показатель повышается пропорционально погружению. Он рассчитывается по специальной формуле:
- p — плотность среды. Примерно равна 1000 кг/м 2 .
- g — это ускорение, которое придается телу силой тяжести. Это значение называется ускорением силы тяжести или свободного падения. На Земле данная величина примерно равняется 9,81 м/с 2 .
- h — глубина, на которую погружается какой-либо объект. Высчитывается в метрах.
Формула является выражением закона Паскаля. По ней высчитывается значение гидростатического прессинга. Он напрямую зависит от высоты водного столба.
Произведение плотности (p) и ускорения (g) приблизительно равняется 0,1 атм. С каждым метром опускания на дно воздействие в водной среде повышается на 0,1 атм. Данное правило подтверждает тот факт, что чем глубже происходит опускание в толщу, тем выше становится показатель воздействия.
Сколько составляет на различных глубоководных участках?
Если какой-либо объект поместить в воду на один метр, то он будет испытывать на себе силу, равную 0,1 атм.
Предмет, погруженный на 2 м, уже станет испытывать прессинг величиной около 0,2.
С каждым последующим метром показатель будет возрастать на 0,1 атм. При 5 м значение равняется 0,5. При 10 оно будет уже равняться 1. Более точное число равняется 0,97 атмосферы.
На глубоководье водная толща становится сжатой. Ее плотность увеличивается. Уже на 100 м сила будет практически равняться 10. Более точное число составляет 9,7.
На глубинном участке в 1 км водная среда будет сдавливать находящиеся в ней объекты примерно со значением в 97 атм. Поскольку при 100 м величина равна 9,7, то на 1000 м она увеличивается в 10 раз.
Изменение показателя на разных глубоководных участках представлено в таблице.
При первых 10 метрах прирост невысокий и составляет 0,1 атмосферы. Дальше его показатель увеличивается.
Заключение
Глубина влияет на давление воды. С каждым метром движения объекта вглубь его показатель увеличивается на 0,1 атм. Уже на 10 м сдавливающая сила воды составляет почти 1 атмосферу. Зависимость обеих величин обусловлена плотностью воды, которая возрастает по мере движения тела в ней на дно.
Также на глубоководье происходит увеличение внешнего силового воздействия на объект. Если на поверхности тела испытывают воздействие только атмосферного давления, то в воде помимо него на них еще оказывается и гидростатическое.
При этом прирост воздействия на разных глубинных участках неодинаков. Особенно он высок при первых 10 м погружения. Дальше он начинает довольно быстро снижаться.
Узнать давление на глубине 1, 5, 10 метров
Калькулятор доступен на полной версии сайта, с помощью него вы можете узнать давление жидкости на глубине 1, 5, 10, 20, 50, 100, 500, 1000 метров.
Вычисления осуществляются по избыточной шкале давления, в которой за 0 принято давление атмосферы.
Расчет давления на глубине
Укажите глубину и выберите среду, по умолчанию выбрана вода.
Исходные данные
Расчетная схема показана на рисунке:
Для расчета используется формула:
- ρ — плотность жидкость
- h — глубина погружения
- g — ускорение свободного падения
- P — величина давления на глубине h
Пример расчета давления воды на глубине 10 метров
Для расчета давления воды на глубине 10 м, введите в графу глубина (h) — 10, выберите жидкость — вода, нажмите кнопку рассчитать.
Каждые 10 метров воды создают давление в 1 атмосферу
Полученное значение давления воды на 10 метрах равно 98,1 кПа, что примерно равно атмосферному давлению 101 кПа. Поэтому в приблизительных расчетах принимают давление в воде на глубине 10 метров равным 1 атмосфере про избыточной шкале.
Администрация сайта за результаты онлайн вычислений ответственности не несет.
Рекорды глубоководных погружений
Как некоторое время назад сообщили в новостях, российские дайверы из давинг-клуба «Water Deep» (Новороссийск) установили мировой рекорд глубоководных погружений в Чёрном море — 179,9 метра.
Ключевые слова здесь — «в Чёрном море». На самом деле это далеко не рекордная глубина.
Погружения на рекордные глубины с аквалангом и без
В 2007 году австрийский фридайвер Герберт Ницш (в другой огласовке — Нич) погрузился без акваланга на глубину 214 метров. Ему же принадлежит незарегистрированный рекорд погружения на глубину 249,9 метров (2012 год).
Из-за превышения скорости всплытия Ницш тогда получил серию микроинсультов. В ходе длительной реабилитации ему приходилось заново учиться владеть руками и ногами, восполнять пробелы в памяти. Однако благодаря умелому лечению, крепкому организму, а главное, несгибаемой силе воли ему удалось восстановить прежнюю форму.
Герберт Ницш. Рекордное погружение на 214 метра без акваланга
В 2013 году российский спортсмен Александр Костышен совершил погружение по методике фридайвинга (на задержке дыхания) на глубину в 265,22 метра. За прошедшие три года этот показатель так и не был перекрыт.
В 2005 году французский учитель начальных классов Паскаль Бернабе погрузился с автономным дыхательным снаряжением на глубину 330 метров.
Правда, это рекорд не был официально зарегистрирован, поэтому на звание абсолютного чемпиона претендует также Нуно Гомес, тогда же, в 2005 году, достигший глубины 318 метров. На спуск у него ушло всего 14 минут; общая же продолжительность погружения, с учетом декомпрессионных остановок (но об этом позже), превысила 12 часов.
Нуно Гомес. Мировой рекорд глубоководного погружения с дыхательным аппаратом
Максимальная глубина погружения на атмосферном воздухе составила 156 метров. Этой отметки удалось достичь британскому инструктору Марку Эндрюсу, правда, с огромным риском: после 140 метров он отключился и до глубины 70 метров, куда поднимали его аквалангисты из группы поддержки, так и не приходил в сознание.
И хотя глубина, покорённая новороссийскими дайверами, почти в два раза меньше достигнутого в 2005 году предела, не стоит относиться к ней пренебрежительно.
Опасности глубоководных погружений с аквалангом
В чём опасность глубоководных погружений? Корень всех проблем — в высокой плотности воды, которая в почти в 800 раз плотнее воздуха. К примеру, на земле пуля, выпущенная из стрелкового оружия, пролетает от нескольких сотен метров до нескольких километров. Под водой дальность её полёта не превышает трёх метров.
Из-за высокой плотности давление под водой увеличивается на одну атмосферу через каждые десять метров. На максимальной для любительского дайвинга глубине 40 метров оно будет равно 5 атмосферам, на глубине 100 метров — 11, а на 330 метрах составит 34 атмосферы!
Поскольку регулятор акваланга подаёт дыхательную смесь в лёгкие ныряльщика под давлением, равным давлению воды, уже на глубине десяти метров он дышит воздухом в два раза более концентрированным, чем на суше. Чем глубже погружение, тем больше газов поступает в кровь дайвера при дыхании.
Зависимость прямо пропорциональная: при давлении в две атмосферы в крови в два раза больше растворённых газов, при трёх атмосферах — в три и так далее. Разумеется, чем меньше времени дайвер провёл на глубине, тем сильнее будет отклонение от этой закономерности.
Попутно замечу, что с глубиной сокращается время, на которое аквалангисту хватит запаса воздуха в баллонах. Давайте немного посчитаем.
Расходование воздуха на глубине
Вопрос для тех, кто любит задачки с подвохом: на сколько вдохов хватит дайверу воздуха, содержащегося в пятнадцатилитровом баллоне под давлением, равным атмосферному? Правильный ответ см. в конце статьи, а я тем временем продолжу 🙂
Если воздух закачан в баллон под давлением 300 атмосфер, на поверхности его хватит примерно на 8970 вдохов. Если у вас получилась другая цифра, всё-таки загляните в конец статьи 🙂 Положим, человек дышит спокойно и размеренно и делает вдох каждые две секунды. В этом случае он обеспечен зарасом воздуха примерно на пять часов.
На глубине 10 метров давление, как я уже упоминал, равно двум атмосферам, поэтому с каждым вдохом в лёгкие аквалангиста поступает уже не поллитра, а литр воздуха. Таким образом, запас воздуха в баллоне будет исчерпан вдвое быстрее — его хватит только на 4470 вдохов. Соответственно сократится и максимальное время пребывания под водой.
На глубине 330 метров при вдохе расходуется 17 литров воздуха. Таким образом, у аквалангиста всего 235 вдохов вместо почти девяти тысяч и менее 8 минут времени — после этого воздух из баллона перестанет поступать. Правда, его останется там ещё около 500 литров (под давлением 34 атмосферы). При подъёме, по мере падения наружного давления, этот воздух можно будет использовать.
Оговорюсь, что пример этот условный — из серии про сферического коня в вакууме. Во-первых, темп вдоха-выдоха зависит от того, насколько тренирован аквалангист, как сильно он волнуется, и от множества других факторов (известно, что новичок расходует в среднем в полтора-два раза больше воздуха, чем дайвер-профессионал). А во-вторых и в-главных, на такую глубину на воздухе никто не погружается (почему — обсудим чуть позже).
Итак, какие же проблемы ожидают аквалангиста при глубоководных погружениях вследствие того, что он дышит воздухом под давлением, многократно превосходящим атмосферное?
Кислородное отравление
1. Проблема первая — кислородное отравление. В высоких концентрациях кислород губителен для нашего организма и действует как сильнейший яд.
Если в баллонах акваланга находится обычный атмосферный воздух с 21% кислорода и 79% азота, уже на глубине 70 метров концентрация кислорода (а говоря более терминологично, его парциальное давление) превышает безопасный уровень, что чревато поражением центральной нервной системы.
Граница зоны кислородного отравления довольно подвижна и зависит от индивидуальных физиологических особенностей, уровня физической подготовки и даже общего состояния организма на момент погружения. По сведениям медицинских источников, кислородное отравление в тяжёлой форме гарантированно наступает при парциальном давлении кислорода, равном 2,5-3,0, т.е. на глубинах свыше 130 метров.
Чем глубже погружение — тем выше риск отравления кислородом. Поэтому глубоководные погружения «на воздухе» заслуженно считаются одним из самых рискованных видов дайвинга. Изменение процентного содержания кислорода и его сочетание с другими газами (вместо азота) снижают вероятность кислородного отравления.
Азотный наркоз
2. Проблема вторая — азотный наркоз. Высокая концентрация азота в крови оказывает на организм воздействие, подобное наркотическому или алкогольному опьянению: дайвер испытывает чувство беспричинной эйфории (либо напротив — беспокойства), утрачивает способность к концентрации внимания, перестаёт трезво оценивать свои действия, утрачивает чувство безопасности; возможны кратковременные потери памяти.
По словам Кусто, человек, находящийся под воздействием азотного наркоза, вполне способен вытащить загубник изо рта, решив в порыве пьяной щедрости поделиться с проплывающей мимо рыбой кислородом.
Физиологическая природа азотного наркоза до конца не изучена. Как правило, появление этого эффекта связывают с растворением азота в жировом слое, покрывающем нервные клетки, что препятствует распространению нервных импульсов.
Азот — единственный «наркотик», не вызывающий привыкания, не дающий в долгосрочной перспективе никаких отрицательных эффектов, от действия которого можно почти мгновенно избавиться, всплыв на меньшую глубину.
Граница зоны азотного наркоза так же, как и граница зоны кислородного отравления, подвижна. Наиболее чувствительные люди ощущают первые симптомы азотного опьянения уже на глубине 24 метров.
Среднестатистический дайвер подвергается действию азотного наркоза в настолько сильной форме, что это может вызвать проблемы с безопасностью, на глубинах более 40 метров. Это одна из причин, по которым нижняя граница любительских погружений установлена именно на таком уровне.
Чтобы избежать азотного наркоза, при глубоководных погружениях используют особые газовые смеси, носящие родовое название «тримикс» (от triple — тройной и mix — смесь); в России иногда используется аббревиатура КАГС (гислородно-азотно-гелиевая смесь).
Один из распространённых вариантов тримикса: 18% кислорода, 42% гелия и 40% азота. Как видим, содержание кислорода, по сравнению с атмосферным воздухом, здесь уменьшено на 3% (страховка от кислородного отравления), а содержание азота — почти вдвое (что позволяет пропорционально увеличить глубину безопасного погружения, без риска азотного наркоза).
Иногда используется гелиокс (смесь кислорода и гелия). Однако гелий производится в промышленных масштабах лишь в немногих странах (в том числе в США и в России), поэтому заправка баллонов тримиксом или гелиоксом обходится примерно в 5 раз дороже, чем обычным атмосферным воздухом.
При погружениях на глубины свыше 100 метров аквалангист, как правило, попеременно дышит несколькими смесями с разным процентным содержанием кислорода, азота и гелия.
Кессонная болезнь
3. Проблема третья — декомпрессионная (кессонная) болезнь. Как я уже говорил, чем глубже погружается дайвер и чем больше времени проводит на соответствующей глубине, тем больше кислорода, азота и / или гелия, растворяется в его крови.
В теории, пребывание на глубине трёхсот тридцати метров приводит к тридцатичетырёхкратному перенасыщению крови ныряльщика азотом / гелием, по сравнению с пребыванием на поверхности. На самом деле, этого не происходит: чтобы кровь успела насытиться избыточным газом в полном объёме, нужно провести на этой глубине определённое время.
При совершении же экстремальных погружений дайвер обычно задерживается на максимальной глубине не дольше нескольких секунд, достаточных для того, чтобы зафиксировать рекорд, и немедленно начинает подъём.
Но даже этих секунд (с учётом общей продолжительности погружения и всплытия) оказывается достаточно, чтобы кровь перенасытилась газами.
Декомпрессионная болезнь возникает при нарушении режима подъёма на поверхность. Рассмотрим классический пример, который приводят, наверное, все, кто пишет о кессонной болезни 🙂
Представьте себе бутылку шампанского. Когда она закупорена, давление в ней может достигать шести атмосфер. Углекислый газ, образовавшийся в процессе брожения, полностью растворён в вине. Но стоит открыть пробку, как как избыточная углекислота из-за разности давлений вскипает множеством пузырьков, которые и придают шампанскому его игристые свойства.
Аналогичный процесс происходит в крови водолаза: выделяющиеся в большом количестве пузырьки азота закупоривают кровеносные сосуды и могут вызвать болезненные явления разной степени тяжести — вплоть до летальных.
В любительском дайвинге все погружения планируются как бездекомпрессионные. Иначе говоря, время пребывания под водой, в зависимости от глубины погружения, рассчитывается так, чтобы в любой момент можно было без вредных для организма последствий осуществить контролируемое аварийное всплытие (подъём на поверхность со скоростью не более 18 метров в минуту).
Если дайвер приближается к бездекомпрессионному пределу пребывания под водой, рекомендуется для подстраховки совершить так называемую «остановку безопасности» на глубине пяти метров в течение трёх минут. Принцип бездекомпрессионности — ещё одна причина, по которой для любительского дайвинга установлен сорокаметровый лимит глубины.
При глубоководных погружениях для дайвера обязательны декомпрессионные остановки (тем более продолжительные, чем большая глубина была им достигнута), для того чтобы избыточный азот / гелий успел вывестись из крови. В результате подъём может растянуться на несколько часов, что требует дополнительных баллонов с дыхательной смесью, заранее подвешенных на тросе на уровне декомпрессионных «стоянок», и серьёзной поддержки с поверхности.
Надо заметить, что гелий, в отличие от азота, быстрее «вскипает» в крови. Таким образом, гелиевые дыхательные смеси, успешно защищая аквалангиста от азотного наркоза, существенно увеличивают время декомпрессии. За всё, как известно, приходится платить 🙂
Попутно — вопрос для самых въедливых 🙂 Почему, в отличие от гелия и азота, кислород не вызывает кессонной болезни?
Опасности фридайвинга
Погружение на большие глубины без акваланга имеет свою специфику. Длится оно обычно не более 7-10 минут (12 минут — максимальное зарегистрированное время задержки дыхания). Тем не менее этого оказывается достаточно, чтобы кровь успела насытиться избыточным азотом: огромное давление на глубине сжимает грудную клетку, так что объём лёгких уменьшается в несколько раз, а плотность воздуха, набранного в них при вдохе перед погружением, пропорционально возрастает.
В среднем объём человеческих лёгких составляет от 4 до 6 литров. Лёгкие «крупногабаритного» натренированного ныряльщика могут вмещать до 10 литров воздуха.
Возьмём «компромиссный» вариант — 7,5 литра. При погружении без акваланга на 40 метров их объём уменьшится до полутора литров, а плотность воздуха в них возрастёт в 5 раз. На глубине 120 метров их объём составит менее 600 миллилитров, а давление воздуха в них возрастёт до 12,5 атмосфер.
Таким образом, азотный наркоз и отчасти декомпрессионная болезнь угрожают не только аквалангистам, но и ныряющим на задержке дыхания фридайверам (пусть и в существенно меньшей степени, поскольку воздух в их лёгких не пополняется на протяжении всего погружения).
Однако сверх этого людей, занимающихся фридайвингом, поджидают дополнительные опасности:
Обжатие грудной клетки
1. Обжатие грудной клетки. При погружении на большие глубины объём лёгких под давлением воды может уменьшиться настолько, что фридайвер будет тяжело травмирован — вплоть до летального исхода.
В медицинских источниках усреднённый теоретический предел погружения без акваланга указывается равным 30-50 метрам. Индивидуальный теоретический предел погружения рассчитывается исходя из объёма лёгких и, как правило, при самых благоприятных показателях не превышает 120 метров.
Естественно, торжествующая практика порой разгромно побивает занудную теорию. Но людей, побивших теорию, чьи имена на слуху у всех фридайверов, — единицы. А вот безвестных ныряльщиков, которые своей смертью подтвердили надёжность теории, — многие и многие сотни. Так что подумайте, нужно ли именно вам идти на рекорд 🙂
Гипоксия
2. Следующая опасность — гипоксия (кислородная недостаточность), вызывающая потерю сознания, что под водой, мягко говоря, нежелательно. Не буду вдаваться здесь в описание физиологических особенностей этого явления, тем более что существует несколько вариантов развития гипоксии при фридайвинге.
Напомню лишь, что объём лёгких невелик и, даже имея специальную подготовку, при глубоководном погружении очень легко просчитаться и уйти «в минус» по кислороду.
Обжим маски и барторавмы
3. Еще одна опасность — обжим маски, а также баротравма среднего уха и гайморовых полостей. Более редкий и экзотический случай — баротоавма зуба (если в результате некачественного пломбирования в нём остался пузырёк воздуха).
Во всех этих случаях причина травмы — разница между давлением в воздушных полостях тела (либо полостях, прилегающих к телу, как подмасочное пространство) и давлением воды снаружи. При отсутствии лор-заболеваний в активной фазе всё это (кроме баротравмы зуба, от которой нет «противоядий», кроме повторного пломбированмя) легко предотвратить продувкой ушей и носа. Но при быстром погружении можно зазеваться и не успеть вовремя выровнять давление.
Подводя итоги
Хотя рекорд новороссийских дайверов и далёк от мировых достижений в этой области, не стоит относиться к нему пренебрежительно. Погружение на такую глубину — весьма рискованное дело, требующее большого мужества, отличной физической подготовки и высокой квалификации.
Мои поздравления, друзья! 🙂
1. Правильный ответ — не насколько 🙂 Выкачать воздух из из замкнутой ёмкости при давлении, равном атмосферному, способен только вакуумный насос.
2. Кислород, в отличие от азота и гелия, активно расходуется организмом, поэтому он не накапливается в крови поводника в количестве, способном вызвать кессонную болезнь.
Давление на глубине под водой
Во время погружений мы используем для дыхания газовую смесь под давлением, равным давлению окружающей нас среды. Это давление называется абсолютным. Оно складывается из действующего на нас давления воды и атмосферы.
Давление, создаваемое атмосферой на поверхности Земли, называется атмосферным давлением. На уровне моря оно равняется 760 миллиметрам ртутного столба или одной атмосфере (одному бару). Однако его значение постоянно изменяется в связи с процессами, происходящими в атмосфере. Для обозначения истинного давления введено понятие «абсолютные атмосферы» (ATA). В наших расчетах мы будем применять для выражения абсолютного давления обозначение PATA.
По европейским стандартам давление в баллоне измеряется в атмосферах (барах), что отражается на манометре, а давление воды измеряется в метрах соленой воды (msw)’или метрах пресной воды (mfw) и показывается глубиномером.
Как вы помните, при погружении, давление воды увеличивается на одну атмосферу (1 бар) каждые 10 метров (msw). Следовательно, каждые 10 метров водяного столба (msw) соответствуют увеличению давления на 1 атмосферу (ATA) или 1 бар.
Чтобы вычислять кислородные лимиты погружений, необходимо уметь определять PATA в море на определенной глубине. Для определения (PATA) нужно прибавить к показанию манометра атмосферное давление в равных единицах. Например, если глубиномер показывает 20 msw (т.е. 2 ATA или 2 бара), то PATA равно 3-м атмосферам (ATA) или 3-м барам. Можно также это вычислить математическим путём.
Для этого сначала определим относительное давление на глубине (D) B атмосферах (Atm) по следующей формуле:
PAtm = msw : 10 msw Затем переведем относительное давление в абсолютное (PATA) – Для этого прибавим к данной величине давление атмосферы — 1 ATA. PATA = (D msw : 10 msw) + 1 ATA
То есть, на глубине 20 метров под водой PATA равно: PATA = (20 msw : 10 msw) + 1 ATA PATA = 2 ATA + i ATA P = 3 ATA (бара) Теперь давайте рассмотрим другой способ определения PATA по глубине. Для этого к значению глубины нужно прибавить 10 msw, что равно атмосферному давлению (1 ATA), и разделить на 10 msw. PATA = (D msw +10 msw) : 10 msw
Применим его к тому же примеру. На глубине 20 метров PATA равно: PATA = (20 msw + 10* msw) : 10 msw PATA — 30 msw : 10 msw P = 3 ATA (бара).
Формула определения максимальной глубины погружения
Компрессор высокого давления для дайвинга
Кристалл Дальтона (процентное содержание)
Обогащенные кислородом воздушные смеси и компоненты
Вы делаете это неправильно
Как такое могло случиться и как делать правильно я расскажу под катом. В довесок к статье есть Open-source библиотека на C#/C/Rust/Matlab/Octave/JavaScript и пара онлайн-калькуляторов для демонстрации.
Статья будет полезна разработчикам подводной техники, число которых за последние лет пять выросло в разы.
Итак, для начала сразу оговоримся, что глубиной часто называют две разных величины:
- и расстояние по вертикали от поверхности воды до точки, где эту глубину измеряют,
- и расстояние по вертикали от поверхности воды до дна.
В первом случае — это глубина погружения, а во втором — глубина места.
Есть ровно два с половиной фундаментальных способа изменения этих величин, как я уже упомянул:
- по гидростатическому давлению столба жидкости, т.е. при помощи датчика давления;
- по времени распространения звука — эхолотом
- по длине выпущенной за борт веревки =)
С веревкой все понятно, а с остальными двумя давайте разберемся. Сегодня разберем:
Способ 1 — По давлению столба жидкости
Из нее легко посчитать высоту столба жидкости (т.е. глубину в нашем случае), не забывая про атмосферное давление
На «100» умножаем, если хотим получить глубину в метрах, измеряем давление в миллибарах, плотность воды в кг/м^3, а ускорение свободного падения в м/c^2.
Давайте абстрагируемся от точности конкретных приборов, пусть даже они у нас суперточные. Проблема в том, что никакой член формулы не является константой. Даже атмосферное давление может меняться в течение часа.
Как влияет атмосферное давление?
Давление у поверхности моря может варьироваться в пределах 641-816 мм. рт. ст., или, тоже самое в миллибарах: от 855 до 1087. Если просто взять за
стандартное значение в 1013.25 мБар, то в зависимости от погоды уже можно получить ошибку в 40-50 сантиметров, причем, как в «плюс», так и в «минус».
Что с ускорением свободного падения?
Боюсь показаться Кэпом, но все же напомню, что земля у нас плоская вращается, и за счет центробежной силы притягивает на экваторе слабее, чем на полюсах.
Если не крохоборничать и не учитывать гравитационные аномалии из-за разной плотности земных пород, гор, впадин, изменения скорости вращения земли от сброшенной земными деревьями листвы и перемещениями соков по их стволам, то нас вполне устроит стандартная зависимость ускорения свободного падения от георафической широты. Т.н WGS-84 Gravity formula.
Согласно этой формуле, ускорение свободного падения меняется от 9.7803 м/с2 на экваторе (0° градусов широты) до 9.8322 м/с2 на полюсах (90/-90° широты).
Допустим, мы возьмем стандартное значение ускорения свободного падения 9.80665 м/с2, на сколько мы ошибемся в худшем случае?
Это иллюстрируетя картинкой ниже. На ней синий график показывает ошибку определения глубины на экваторе, если мы будем использовать стандартное значение
То есть, если мы подставим в формулу стандартное значение
и пойдем погружаться где-то ближе к экватору, то на 100 метрах ошибемся всего на 20-30 сантиметров, на километре — на 2,5-3 метра, а на 9-10 километрах (Бездна Челленжера, кстати, находится на 11° северной широты) ошибка будет уже 25-30 метров. Т.е. реальная глубина будет больше, чем та, которую мы измерим.
А как влияет плотность воды?
Самым нехорошим образом. Если два первых компонента погрешности учесть достаточно просто, да и вклад их весьма скромен, то с плотностью воды история более замысловатая.
Дело в том, что плотность воды в упрощенном случае есть функция температуры, давления и солености.
То есть мало измерять давление, атмосферное давление, учитывать географическую широту места. Нужно еще знать температуру и соленость воды.
Для определения плотности морской воды в (разумном) диапазоне условий на практике наиболее широко применяется формула из работы Чена и Миллеро (Да, ЮНЕСКО занимается еще и этим!)
Допустим, мы измерили и температуру и соленость, но остается сжимаемость воды — изменение плотности с давлением (т.е. с глубиной), и чтобы определить высоту столба жидкости нужно просуммировать высоты элементарных столбиков, на которых давление изменяется на какую-то малую величину
N — это число интервалов разбиения давления от
Плотность зависит от давления практически линейно, и считать такую сумму из-за учета одной лишь сжимаемости смысла нет, но я привел здесь эту формулу не просто так.
Сам факт, что плотность зависит от трех параметров — это еще пол беды. Сложность кроется в том, что все эти параметры могут сильно меняться с глубиной. В этом случае принято говорить о профиле температуры и солености. Вот так, к примеру, выглядит профиль из Арктики:
Вот так с северной части тихого океана:
А вот так, для сравнения — с юга атлантики:
Например, если представить, что мы погружается в северной части тихого океана (39°СШ,152°ВД) учитываем атмосферное давление и географическую широту места и сжимаемость воды, а наш датчик давления показывает 100 Бар (
1000 м), а температуру и соленость мы берем в точке измерения, но не учитываем профиль, мы ошибемся с глубиной на 2 метра.
Я специально запилил онлайн-калькулятор и добавил три тестовых профиля (их можно переключать кнопками), чтобы каждый мог сам попробовать.
Если теперь просто переключить профиль на «южноатлантический» и попробовать пересчитать, то мы увидим, что разница выросла до 6-и метров. Напомню: все, даже сжимаемость воды мы уже учли! Ошибка связана только с наличием профиля — слоев разной температуры и солености в толще воды.
Естественно, все меняется и со сменой времен года и со сменой времени суток. Летом (в северном полушарии, зимой — в южном) верхний слой прогревается, а зимой — остывает. Шторма перемешивают воду, дожди смывают грязь с суши и реками уносят в моря, таят снега и ледники.
Это я к тому, что нельзя один раз перемерить и выбить в граните все профили температуры и солености для всех морей и океанов — все течет, все меняется. И если вдруг вы собрались погружаться на ощутимые глубины и у вас нет температурного профиля — я не поверю в ваш рекорд )
Матчасть
Как я упомянул в начале статьи, все необходимое для расчета глубины я собрал в библиотеку и положил на GitHub.
Она в том числе переведена на JavaScript, а в качестве интерактивного примера ее использования привожу онлайн-калькулятор.
Благодарю за внимание, буду искренне благодарен за конструктивную критику, сообщения об ошибках, пожелания и предложения.
В следующей статье разберу второй способ определения глубины — по эхолокации.
Какое атмосферное давление под водой
Несколько слов о давлении на больших глубинах. Воздушная оболочка Земли давит на каждый квадратный сантиметр ее поверхности с силой примерно в 1 килограмм. Это давление принято называть 1 атмосферой. В море с каждыми 10 метрами давление увеличивается на 1 атмосферу. Следовательно, на глубине 10000 метров давление достигает почти 1000 атмосфер. Что означают эти цифры?
Достаточно опустить деревянный шар на 1000 метров в море, как давлением он будет сжат до половины его первоначального объема. На глубине 10000 метров какой-либо предмет величиной с человека испытывает давление, равное весу 1000 самых тяжелых паровозов. При опускании в море приборов это огромное давление необходимо, конечно, учитывать.
«Челленджер» имел в своем распоряжении глубинные термометры, которые выдерживали давление в 3500 килограммов на квадратный сантиметр, что соответствует весу водяного столба высотой 4800 метров. Однажды их погрузили в море на 7000 метров; на борт корабля они были извлечены совершенно расплющенными.
Раньше считали, будто на больших глубинах вода вследствие колоссального давления настолько сильно уплотнена, что вес ее по сравнению с поверхностной водой значительно увеличивается. Поэтому предметы, упавшие в море, не достигают якобы дна, а на определенной глубине плавают во взвешенном состоянии. Новейшие исследования показали необоснованность такого представления. Несмотря на давление, которое вода испытывает, даже на больших глубинах она сжимается очень мало; на глубине 9000 метров вода теряет 1 /24 часть своего объема. Поэтому вес воды в глубинах моря практически не может препятствовать достижению дна тонущими предметами. «Титаник», о котором мы уже говорили, не «парит» где-то между поверхностью моря и его ложем, а лежит спокойно на дне; в том месте, где пароход столкнулся с айсбергом, дно находится на глубине 4000 метров.
Количество затонувших кораблей достигает многих тысяч. Передо мной лежит Интернациональный регистр за 1937 год, в котором потери второй мировой войны еще не учтены. В Регистре приводятся названия около 3500 различных кораблей, пароходов, катеров, крейсеров, танкеров, истребителей, парусников, подводных лодок, торпедных катеров, тральщиков и канонерок. Как бы глубоко ни было море, в котором они потерпели аварию, все они опустились на дно. Даже дерево и пробка плавают только благодаря тому, что в их порах находится воздух. Давление, которое царит на больших глубинах, вытесняет воздух из пор, и дерево или пробка тонут, как и все плотные тела. Поэтому их плавучестью нельзя воспользоваться при изготовлении глубоководных приборов.
Если бы море могло освободиться от давления, это привело бы к значительному подъему зеркала воды: уровень моря поднялся бы на 30 метров; огромные площади низменностей оказались бы затопленными.
Давление под водой в морских глубинах
Со школьных лет всем известно, что вода плотнее воздуха. Из-за этого изменение давления под водой с погружением происходит быстрее, чем смена его при увеличении высоты. Так, при спуске на 10 метров происходит рост давления на одну атмосферу. В глубоких океанических впадинах, достигающих 10 тысяч метров, этот показатель составляет 1 тысячу атмосфер. Как узнать, как изменяется давление под водой и как оно влияет на живых существ, будет описано ниже.
Физические расчеты
Плотность соленой морской воды на 1-2% выше показателя пресной жидкости. Поэтому с определенной точностью можно высчитать, какое давление под водой, потому что при погружении на каждые 10 метров происходит его рост на одну атмосферу. К примеру, подводная лодка на глубине 100 метров испытывает давление в 10 атмосфер, что можно сравнить с показателями внутри парового котла в паровозе. Из этого следует, что каждому слою в море соответствует свой гидростатический показатель. Все подводные лодки снабжены манометрами, которые измеряют давление воды за бортом, на основании чего можно определить степень погружения.
На большой глубине становится заметной сжимаемость воды, поскольку ее плотность в глубоких слоях выше, чем на поверхности. И давление растет быстрее, чем по линейному закону, из-за чего график слегка отклоняется от прямой линии. Дополнительное давление, вызванное сжатием жидкости, увеличивается пропорционально квадрату. При спуске на 11 км оно составляет около 3% от всего давления на этой глубине.
Как исследуют моря и океаны
При изучении используются батискафы и батисферы. Батисфера — это стальной шар с пустотой внутри, который выдерживает очень высокое давление морских глубин. В стенку батисферы ставится иллюминатор — герметичное отверстие, закрытое прочными стеклами. Батисферу с исследователем опускают с корабля на стальном тросе до того слоя воды, который не может осветить прожектор. Благодаря этому приспособлению удавалось спуститься до 1 км. Батискафы с батисферой (укрепленной внизу большой цистерной из стали), которая заполнена бензином, может достигнуть еще большего погружения.
Поскольку плотность бензина меньше воды, подобная конструкция может перемещаться в море, словно дирижабль в воздухе. Вместо легкого газа используется бензин. При этом батискаф снабжен запасом балласта и двигателем, благодаря которому он, в отличии от батисферы, может перемещаться самостоятельно, не требуя связи с кораблем на поверхности.
Исследования давления под водой на глубине
Поначалу батискаф плавает по воде, словно всплывшая подводная ложка. Для начала погружения в пустые балластные отсеки вливается забортная вода, из-за чего конструкция начинает опускаться под воду все глубже и глубже, пока не достигнет дна. Для всплытия на поверхность выполняется сброс балласта, и без лишнего груза батискаф легко поднимается на поверхность.
Самое глубокое погружение с использованием батискафа было выполнено 23 января 1960 года, когда он пробыл 20 минут в Марианской впадине на глубине 10919 метров под водой, где давление составляло более 1150 атмосфер (расчет проводился с учетом повышения плотности жидкости из-за сжатия и солености). По итогу эксперимента исследователи обнаружили живых существ, обитающих даже в таких труднодоступных местах.
Давление воды
Ныряя, аквалангист или пловец сталкивается с гидростатическим давлением по всей поверхности тела, при этом оно превышает нормальные показатели его организма. Хотя тело водолаза может не соприкасаться с водой напрямую за счет резинового костюма, он сталкивается с тем же давлением, что оказывает влияние на тело пловца, поскольку воздух в скафандре требуется сжать с учетом показателей окружающей среды. Из-за этого даже подаваемый через шланг воздух для дыхания должен закачиваться с учетом давления воды на предполагаемой глубине. Тот же показатель обязан быть у воздуха, доставляемого из баллонов в маску аквалангиста. Таким образом, ныряльщикам приходится дышать воздухом с непривычными показателями.
Не поможет от давления и водолазный колокол или кессон, поскольку в нем следует сжать воздух, чтобы он не попал под колокол, то есть увеличить до показателей окружающей среды. По этой причине при постепенном погружении происходит постоянная подкачка воздуха с расчетом на давление воды на достигнутой глубине.
Высокие показатели плохо влияют на самочувствие и здоровье человека, из-за чего есть определенный предел, до которого могут работать люди без вреда для здоровья. Обычно при нырянии в водолазном костюме он достигает 40 метров, что соответствует 4 атмосферам. Опуститься на большую глубину водолаз может только в жестком скафандре, который примет на себя давление воды. В нем можно спокойно погрузиться до 200 метров.
Влияние на здоровье человека
При долгом нахождении под водой при высоком давлении немалое количество воздуха растворится в крови и других биологических жидкостях тела. Если произойдет быстрый подъем водолаза на поверхность, то растворенный воздух начнет выделяться из крови в виде пузырьков. Резкое выделение пузырьков может привести к появлению сильной боли по всему телу и привести к кессонной болезни. Поэтому поднятие водолаза, долго проработавшего на большой глубине, может занять много времени (несколько часов), чтобы растворенный газ выделялся постепенно и без пузырьков.
Давление в море и морские животные
Хотя ранее были указаны огромные значения давления, имеющего место на дне моря, для морских животных это не столь существенные показатели. Местные обитатели могут в течении суток легко и спокойно переносить огромные колебания этого показателя. Однако некоторые такие животные очень плохо переносят резкую смену давления. К примеру, при извлечении на сушу морской окунь раздуется, особенно если его очень быстро извлечь из воды.
Атмосферное давление под водой достаточно просто рассчитывается. Достаточно запомнить, что на каждые 10 метров приходится 1 атмосфера. Однако на больших глубинах вступают в силу и другие показатели, такие как сжатие и плотность воды. В связи с чем придется проводить расчет с учетом этих значений.
Верхние слои давят на нижние. За счет этого возникает сдавливающая сила на глубоководье. При этом ее показатель на одной глубине один и тот же по всем направлениям.
Возникшая разница между двумя давлениями, одно из которых оказывается на грудную клетку водой, а второе воздухом, что создается в легких, не позволит человеку нормально дышать. При большем погружении грудная клетка разорвется.
P = p * g * h, где
- p — плотность среды. Примерно равна 1000 кг/м2.
- g — это ускорение, которое придается телу силой тяжести. Это значение называется ускорением силы тяжести или свободного падения. На Земле данная величина примерно равняется 9,81 м/с2.
- h — глубина, на которую погружается какой-либо объект. Высчитывается в метрах.
Давление и глубина всегда взаимосвязаны. Соотношение между ними выявляется через специальную формулу. Давление меняется на разной глубине. О том, как оно высчитывается и что требуется для вычислений мы расскажем дальше.