Презентация на тему: «КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.». Скачать бесплатно и без регистрации.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. Кислород

Лекция 2 кислород и сера.

План.

  1. Общая характеристика подгруппы. Кислород как химический элемент.
  2. Кислород как простое вещество.
  3. Озон.
  4. Сера как химический элемент.
  5. Сера как простое вещество.
  6. Соединения серы с отрицательной степенью окисления.
  7. Оксиды серы.
  8. Серная кислота и ее соли.

Главную подгруппу 6 группы составляют кислород, сера, селен, теллур и полоний. Все эти элементы (их иногда называют халькогены) имеют на внешнем валентном слое конфигурацию типа s2p4 , т.е. близкую к завершению. Это обуславливает окислительные способности этих элементов. Следует отметить, что их ЭО при переходе от кислорода к теллуру резко снижается, т.к. появление новых электронных слоев ведет к увеличению радиуса атомов. Наибольшей окислительной способностью обладают типичные неметаллы — кислород и сера.

Кислород как химический элемент. Кислород или Оксиген №8. 2 период, 6 группа, главная подгруппа.

Состав атома:8р, 8е, 8n.

Схема строения: заряд ядра 8, два электронных слоя (2 е, 6 е)

Электронная и графическая формулы: 1s22s22p4

Типичный неметалл, сильный окислитель. Практически единственная степени окисления: -2.

Практически единственная валентность: II.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. Самый распространенный элемент на Земле. На его долю приходится почти половина массы земной коры и около 90% массы мирового океана. Встречается в свободном состоянии в виде двух аллотропных модификаций: кислород О2 и озон О3. Эти газы входят в состав атмосферы, кислород в нем составляет около 21% по объему, озон – доли процента. Входит в состав неорганических соединений оксидов и гидроксидов, а также в состав многих солей. Содержится в важнейших органических соединениях: спиртах, альдегидах, кислотах и сложных эфирах. Является органогеном, входит в состав белков, жиров и углеводов, нуклеотидов и т.д.

2. Физические свойства кислорода. При н.у. это бесцветный газ, не имеющий запаха. Температура кипения кислорода (-183оС). Немного тяжелее воздуха, немного растворим в воде (в 100 объемах воды — около 5 объемов кислорода при 0оС). Жидкий кислород притягивается магнитом.

Химические свойства кислорода. Кислород во всех химических реакциях проявляет сильные окислительные свойства. Его бинарные соединения с элементами называются оксидами. Кислород образует оксиды со всеми элементами, кроме гелия, неона и аргона. Оксиды образуются при окислении простых веществ (непосредственно не взаимодействуют с кислородом только галогены, золото и платина), при окислении сложных веществ. Реакции взаимодействия веществ с кислородом часто сопровождаются выделением тепла и света и поэтому их называют горением. При горении веществ на воздухе выделяется такое же тепла, но часть его тратится на нагревание азота, входящего в состав воздуха, поэтому температура пламени значительно снижается. Оксиды могут образовываться и при разложении сложных веществ (гидроксидов и солей), эти реакции, наоборот, обычно идут с поглощением энергии.

P0 O20 => P2 5 O5-2

S O2 => SO2

Mg O2 => MgO

Fe O2 => Fe2O3

CH4 O2 => CO2 H2O

ZnS O2 => ZnO SO2

Cu(OH)2 => CuO H2O

CaCO3 => CaO CO2

Роль в природе: процессы дыхания, гниения по химической сути являются процессами окисления сложных органических веществ.

Применение: Как сырье для получения различных соединений; для интенсификации процессов в химической и металлургической промышленности; для получения высоких температур (сварка и резка металла, ракетное топливо); жидкий кислород в смеси с опилками или другими горючими веществами используют как ВВ; газообразный кислород используют в медицине для лечения различных заболеваний (оксигенотерапия).

3. Озон. При н.у. это газ, обладающий характерным запахом. Температура кипения озона (-112оС). Он тяжелее воздуха, растворим в воде (в 100 объемах воды — около 50 объемов озона при 0оС). Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.

Озон образуется из кислорода при пропускании через него электрического разряда или жесткого УФ излучения.

О2 => O3

Обратная реакция – распад озона – протекает самопроизвольно, т.е. озон неустойчивое соединение. Озон – один из сильнейших окислителей, при его взаимодействии с веществами тоже образуются оксиды, но реакции протекают более энергично, чем с кислородом. Как сильный окислитель озон убивает бактерии и применяется для обеззараживания воды и помещений. Озон ядовит, ПДК в воздухе 10-5% , при этой концентрации хорошо ощущается его запах. В верхних слоях атмосферы концентрация озона обычно лежит в пределах 10-7-10-6.

Оксиды- один из важнейших классов неорганических веществ. Они делятся на основные, кислотные и амфотерные оксиды. Все они образуют гидроксиды и соответствующие соли. Кислород входит также в состав большого количества органических соединений.

Роль кислорода в организме и использование кислорода и озона в медицине. Содержание кислорода в организме 62,43%. Взрослый человек потребляет 264 см3 кислорода в мин. Оксиген имеет исключительное биологической значение, от него зависят важнейшие биохимические процессы, он участвует во всех видах обмена веществ. Наиболее известный физиологический процесс с участием кислорода – дыхание. Этот сложный физиологический процесс включает в себя не только процесс газообмена в легких, но и транспорт кислорода с током крови от легких к клеткам. Именно там в митохондриях происходит процесс тканевого дыхания, т.е. процесс окисления органических веществ. Продукты окисления (СО2) кровь уносит к легким. А энергия, которая выделяется в процессе реакции окисления тратится на образование молекул АТФ. При гидролизе АТФ энергия снова выделяется и расходуется на нужды организма. Т.е. с участием кислорода проходят все окислительные реакции в организме, за счет энергии этих реакций протекают все физиологические процессы. С кислородом связаны также фагоцитарные функции организма. Вспомните особенности строения атома кислорода. У него ярко выраженные неметаллические, окислительные свойства. В медицинской практике используются не только множество соединений кислорода (оксидов, гидроксидов, кислот, солей, органических и неорганических соединений) но и простые вещества – кислород и озон. Оксигенотерапия – кислородом лечат гельминтозы, сердечно-сосудистые и инфекционные заболевания, он стимулирует работу нервной системы, обладает снотворным действием и т.д. Оксигенотерапия лежит в основе климатолечения. Оксигенобаротерапия – метод лечения, в котором используется дыхание воздушной смесью с повышенным содержанием кислорода, в специальных герметичных помещениях барокамерах. В озонотерапии используют озон. Это сильнейший окислитель, в больших количествах он ядовит. Образуется из кислорода при электрическом разряде, под действием УФ. Озон обладает бактерицидным, дезодорирующим действием; используется для обработки питьевой воды, помещений, белья; в смеси с кислородом используется для лечения различных заболеваний.

4.Сера как химический элемент. Сульфур №16. 3 период,6 группа, главная подгруппа.

Состав атома: 16р, 16е, 16n.

Схема строения: заряд ядра 16, три электронных слоя (2 е, 8 е, 6 е)

Электронная и графическая формулы:

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. Типичный неметалл. Характерные степени окисления: 6 и -2, возможна 4.

Возможные валентности: II, IV, VI.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. Широко распространен в природе, содержание в земной коре 0,1%. Встречается в свободном состоянии (самородная сера) и в виде соединений. Например: сульфидов (железный колчедан FeS2, свинцовый блеск PbS) и сульфатов (гипс CaSO4∙2H2O, глауберова соль Na2SO4∙10H2O).Органоген, входит в состав белка

.

5. Сера как простое вещество. Для серы характерна аллотропия. Три модификации. Сера ромбическая: твердое вещество желтого цвета, молекулярная кристаллическая решетка, S8, плавится при 112,8оС, плотность 2,07 г/см3. Нерастворима в воде, не смачивается. Растворяется в бензоле. Сера моноклинная: твердое вещество темно-желтого цвета, молекулярная кристаллическая решетка, S8, плавится при 119,3оС, плотность 1,96г/см3 . При н.у. неустойчива, превращается в ромбическую. Сера пластическая: резиноподобная коричневая масса, аморфное строение, S∞. При н.у. неустойчива, превращается в ромбическую.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.Химические свойства: типичный неметалл, может быть и окислителем и восстановителем.

Как окислитель взаимодействует с металлами и водородом:

Al S→ Al2S3

Na S → Na2S

H2 S → H2S

Как восстановитель – с активными неметаллами:

S O2 →SO2

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.

Получение:

1). Самородная сера. Перегретым водяным паром обрабатывают породу.

2). Разложение пирита без доступа воздуха: FeS2 → FeS S

3). Неполное сгорание сероводорода: H2S O2 → S H2O

Применение:

1). Получение серной кислоты и сульфатов.

2). Получение сульфитов.

3). Производство красителей, резины, черного пороха, спичек, лекарств.

Сера в организме человека и ее использование в медицине.

Содержание в организме 0,16%, суточная потребность 4-5 грамм. Больше всего серы содержится в кератине волос, костях, нервной ткани; входит в состав белков (аминокислоты цистеин и метионин), гормонов, витаминов. В организме серная кислота, образующаяся в процессе метаболизма, обезвреживает ядовитые продукты метаболизма (фенол, скатол, крезол) и чужеродные токсины (тяжелые металлы). Простое вещество сера оказывает противомикробное и противопаразитарное действие, серные мази и суспензии используют для лечения кожных заболеваний, гельминтозов. 1% раствор серы в персиковом масле (сульфозин) используют при лечении шизофрении и алкоголизма. Тиосульфат натрия обладает противовоспалительным и противоаллергическим действием.


Дата добавления: 2022-02-09; просмотров: 82; Нарушение авторских прав


§

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. H2S — сероводород, бесцветный газ с характерным запахом гниющего белка. Кристаллизуется при -85,7оС, кипит при -60,8оС. Немного тяжелее воздуха, при н.у. в 1л воды растворяется 2,5 л сероводорода.

Восстановитель, окисляется кислородом воздуха (горение)

H2S O2 →SO2 H2O, при недостатке кислорода или низкой температуре H2S O2 →S H2O

Водный раствор называют сероводородной водой, на воздухе, на свету она становится мутной (опалесцирует) в результате образования коллоидного раствора серы в воде (см. предыдущую реакцию). Кроме того раствор сероводорода обладает свойствами кислоты, поэтому его называют сероводородной кислотой, это слабая кислота. Образуется при гниении белков, встречается в водах минеральных источников и вулканических газах. Такие источники могут быть причиной гибели человека ( Сероводород очень ядовит!), но могут использоваться и для лечения желудка, почек, кожи. Соли сероводородной кислоты называют сульфидами. Большинство из них нерастворимо в воде. В природе эти соли образуют минералы, которые используют как руды цветных металлов: ZnS, CuS, PbS…Многие сульфиды имеют переменный состав. В легкой промышленности используют сульфиды натрия и кальция для очистка кожи от шерсти. Сульфиды щелочноземельных металлов служат основой люминофоров. А в лабораториях реакции образования сульфидов используют для определения многих металлов, т.к. эти соли имеют характерный цвет.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.


Дата добавления: 2022-02-09; просмотров: 17; Нарушение авторских прав

Про кислород:  Валентность химических элементов. Степень окисления химических элементов – HIMI4KA

§

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.SO2 — оксид серы (IV), сернистый газ. Бесцветный газ с резким запахом, на воздухе не горит, легко растворяется в воде, ядовит.

Химические свойства: кислотный оксид, характерны восстановительные свойства.

Как восстановитель:

SO2 O2Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. SO3, катализатор V2O5

Как кислотный оксид сернистый газ взаимодействует со щелочами:

SO2 NaОН →NaНSO3 и Na2SO3 H2O (соли гидросульфиты и сульфиты).

С водою образуется сернистая (сульфитная) кислота.

SO2 H2O ↔ H2 SO3 Это слабый электролит. Нестойкая, существует только в водных растворах, легко окисляется кислородом воздуха до серной кислоты: H2 SO3 O2 → H2 SO4.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. Обесцвечивает органические красители.

Получение:

1). Горение серы: S O2 →SO2

2). Обжиг сульфидов: ZnS O2 → ZnO SO2 и т.д.

Большое количество сернистого газа образуется при горении органических соединений (каменный уголь).

Применение:

1). Производство серной кислоты.

2). Производство сульфитов и гидросульфитов.

3). В с/х для уничтожения насекомых и микроорганизмов.

4). В текстильной промышленности для отбеливания тканей, соломки и т.д.

5). При консервировании фруктов и ягод.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.SO3 – оксид серы (VI), серный ангидрид. Молекула существует только в парах, при понижении температуры полимеризуется. При н.у. это бесцветная жидкость, летучая, «дымит» на воздухе, кристаллизуется при 17оС, кипит при 66оС. Легко растворяется в воде, токсичен.

Химические свойства: сильный окислитель, кислотный оксид.

Как кислотный оксид:

SO3 H2O →H2 SO4 Q, взаимодействует с водой, образуя серную кислоту, при этом выделяется большое количества тепла.

SO3 NaОН →NaНSO4 и Na2SO4 H2O, т.е. образует гидросульфаты и сульфаты

Получение: в промышленности SO2 O2Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. SO3, катализатор V2O5

Применение: как промежуточный продукт при производстве серной кислоты, в лаборатории как сильное водопоглощающее средство.


Дата добавления: 2022-02-09; просмотров: 13; Нарушение авторских прав


§

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. H2 SO4ббесцветная маслянистая жидкость, плотность 98% раствора 1,84 г/см, нелетучая и запаха не имеет. Чрезвычайно гигроскопична, легко поглощает воду. При растворении выделяется большое количество тепла.

Химические свойства: 1. Сильная кислота, распадается на ионы по двум ступеням практически на 100%, образует два ряда солей.

H2SO4 ↔ H HSO4 — гидросульфат –ион

HSO4 ↔ H SO4 2- — сульфат- ион

Разбавленная кислота H2 SO4 обладает всеми общими свойствами кислот: изменяет окраску растворов индикаторов); взаимодействует с основаниями, основными оксидами и солями (реакции ионного обмена, не ОВР!):

H2SO4 2 KOH → K2SO4 2H2O;

2H SO42- 2K 2OH= 2K SO42- 2H2O; H OH= H2O

H2SO4 KOH → KНSO4 H2O

3H2SO4 Al2O3 → Al2(SO4)3 3H2O;

2H 3SO42- Al2O3 → 2Al3 3SO42- H2O ; 2H Al2O3 → 2Al3 H2O

H2SO4 Na2CO3→ Na2SO4 H2CO3 → Na2SO4 H2O CO2↑;

2H SO42- 2Na CO3→ 2Na SO42- H2O CO2↑; 2H CO3H2O CO2↑;

Во всех этих реакциях главную роль играют ионы водорода, а SO42- просто присутствует в растворе. Специфической реакцией иона SO42- (т.е. серной кислоты и всех ее солей) является реакция с солями бария.

H2SO4 BaCl2 → 2HCl BaSO4

2H SO42- Ba2 2Cl → 2H 2Cl BaSO4

SO42- Ba2 BaSO4

Na2SO4 Ba(NO3)2 → 2NaNO3 BaSO4

2Na SO42- Ba2 2NO3 → 2Na 2NO3 BaSO4

SO42- Ba2 BaSO4

Эту реакцию называют «качественной реакцией» на серную кислоту и ее соли, потому что в ней образуется характерный мелкокристаллический белый осадок BaSO4. Реакцию используют в лабораторной практике для определения наличия в растворе иона SO42-.

При взаимодействии с металлами серная кислота может вести себя по-разному, в зависимости от концентрации и активности металла.

В разбавленной H2SO4 окислителем является ион Н , поэтому разбавленная серная кислота взаимодействует только с металлами стоящими в ряду напряжений до водорода, причем, одним из продуктов реакции будет газ водород.

H2SO4(разб.) Zn → H2 ↑ ZnSO4

Zn0 – 2e → Zn 2 H e → H0

Но если мы возьмем концентрированную кислоту, то в роли окислителя выступит S 6 , и вместо водорода мы получим продукт ее восстановления – какое-то соединение серы. Какое? Это зависит от активности металла, температуры, концентрации кислоты. Обычно образуется смесь таких веществ. Но, упрощая, можно считать, что чем активнее металл, тем более глубоко идет процесс восстановления, и степень окисления серы в продукте реакции будет ниже. Следует также отметить, что с концентрированной H2SO4 взаимодействуют все металлы, кроме золота и платины, но на холоду железо, алюминий и хром пассивируются (не реагируют из-за образования прочной пленки на поверхности металла), а некоторые металлы не реагируют и с разбавленной серной кислотой (если при этом образуется нерастворимая соль).

H2SO4(конц.) Zn → ZnSO4 H2О S Zn0 – 2e → Zn2 S 6 6e → S0

H2SO4(конц.) Cu → ZnSO4 H2О SO2 Cu0 – 2e → Cu2 S 6 2e → S 4

H2SO4(конц.) Ca → CaSO4 H2О CaS Ca0 – 2e → Ca2 S 6 8e → S-2

H2SO4(конц.)– сильный окислитель, и может окислять не только металлы, но и неметаллы и даже их соединения, обугливает органические вещества (т.к. забирает воду, например, у углеводов)

H2SO4(конц.) C → СО2↑ H2О SO2

C0 – 4e → C4 S 6 2e → S 4

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации.Получение серной кислоты. В промышленности процесс получения серной кислоты обычно включает в себя три стадии. Сырьем является FeS2 (пирит, железный колчедан).

1) обжиг колчедана (принцип теплообмена, в «кипящем слое», воздух обогащен кислородом):

FeS2 O2 → Fe2O3 SO2 13746кДж

2) каталитическое окисление сернистого газа (4500С, катализатор V2O5 оксид ванадия (V), принцип противотока):

SO2 O2 ↔ SO3 197,9кДж

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. 3) гидратация оксида серы (VI) (принцип противотока, принцип теплообмена, орошение концентрированной серной кислотой)

SO3 H2O →H2 SO4 130,6 кДж

Конечным продуктом является «олеум» — раствор SO3 в концентрированной H2 SO4.

В производстве серной кислоты часто используют сернистый газ, получаемый при обжиге цветных руд, горении топлива или свободной серы. Т.е. первая стадия может быть немного другой, а вот две последние – всегда одинаковы.

Применение. Серная кислота – «хлеб» химической промышленности.

Презентация на тему: "КИСЛОРОД И СЕРА ВАСИЛИЙ КАДЕВИЧ 2008г.. Положение в периодической системе КИСЛОРОД и СЕРА элементы VIA группы периодической системы элементы VIA группы.". Скачать бесплатно и без регистрации. 1) получение сульфатов, которые широко используются в народном хозяйстве, например:

— K2SO4 и (NH4)2 SO4 — сульфаты калия и аммония, в с/х как минеральные удобрения

— CuSO4∙5H2O – медный купорос, в с/х как средство борьбы с болезнями растений, в легкой промышленности как краситель, в строительстве как противогрибковое средство, в гальванопластике (покрытие слоем меди)

FeSO4∙ 7H2O – железный купорос, в с/х средство борьбы с вредителями растений, в легкой промышленности при крашении тканей.

CaSO4∙ 2H2O – минерал гипс, в строительстве используют «жженый гипс» 2CaSO4∙ H2O под названием «алебастр» в состав шпаклевок, в медицине — слепки, шины, в художественно- прикладном творчестве.

Na2SO4∙ 10H2O – глауберова соль, в медицине как слабительное, в производстве стекла

BaSO4 –в медицине, (рентген желудка), в производстве бумаги, резины как наполнитель

2) в цветной металлургии (гидрометаллургия, получение меди, никеля и т.д.) и обработке металлов (печатные платы, гальваника, аккумуляторы и т.д.)

3) неорганический синтез (производство минеральных удобрений, пигментов, кислот…) и органический синтез (производство красителей, ВВ, полимеров…)

4) производство бумаги

5) производство соды (стекло, СМС)

Соли серной кислоты не обладают окислительными свойствами, вступают в обычные реакции ионного обмена.


Дата добавления: 2022-02-09; просмотров: 38; Нарушение авторских прав


Сера, химические свойства, получение

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Соли серной кислоты

Серная кислота, будучи двухосновной, образует два ряда солей: средние, называемые сульфатами, и кислые, называемые гидросульфатами. Сульфаты образуются при полной нейтрализации кислоты щелочью (на один моль кислоты приходится два моля щелочи), а гидросульфаты — при недостатке щелочи (на один моль кислоты — один моль щелочи):

Многие соли серной кислоты имеют большое практическое значение.

Качественная реакция на сульфат-ион. Большинство солей серной кислоты растворимо в воде. Соли CaSO4 и PbSO4 мало растворимы в воде, a BaSO4 практически нерастворима как в воде, так и в кислотах. Это свойство позволяет использовать любую растворимую соль бария, например ВаСl2, как реагент на серную кислоту и ее соли (точнее, на ион Подгруппа кислорода

или в ионной форме:

При этом выпадает белый нерастворимый в воде и кислотах осадок сульфата бария.

Услуги по химии:

  1. Заказать химию
  2. Заказать контрольную работу по химии
  3. Помощь по химии

Лекции по химии:

  1. Основные понятия и законы химии
  2. Атомно-молекулярное учение
  3. Периодический закон Д. И. Менделеева
  4. Химическая связь
  5. Скорость химических реакций
  6. Растворы
  7. Окислительно-восстановительные реакции
  8. Дисперсные системы
  9. Атомно-молекулярная теория
  10. Строение атома в химии
  11. Простые вещества
  12. Химические соединения
  13. Электролитическая диссоциация
  14. Химия и электрический ток
  15. Чистые вещества и смеси
  16. Изменения состояния вещества
  17. Атомы. Молекулы. Вещества
  18. Воздух
  19. Химические реакции
  20. Закономерности химических реакций
  21. Периодическая таблица химических элементов
  22. Относительная атомная масса химических элементов
  23. Химические формулы
  24. Движение электронов в атомах
  25. Формулы веществ и уравнения химических реакций
  26. Химическая активность металлов 
  27. Количество вещества
  28. Стехиометрические расчёты
  29. Энергия в химических реакциях
  30. Вода 
  31. Необратимые реакции
  32. Кинетика
  33. Химическое равновесие
  34. Разработка новых веществ и материалов
  35. Зеленая химия
  36. Термохимия
  37. Правило фаз Гиббса
  38. Диаграммы растворимости
  39. Законы Рауля
  40. Растворы электролитов
  41. Гидролиз солей и нейтрализация
  42. Растворимость электролитов
  43. Электрохимические процессы
  44. Электрохимия
  45. Кинетика химических реакций
  46. Катализ
  47. Строение вещества в химии
  48. Строение твердого тела и жидкости
  49. Протекание химических реакций
  50. Комплексные соединения
Про кислород:  Пульсоксиметр цена в аптеках Москвы, купить - Поиск лекарств

Лекции по неорганической химии:

  1. Важнейшие классы неорганических соединений
  2. Водород и галогены
  3. Подгруппа азота
  4. Подгруппа углерода
  5. Общие свойства металлов
  6. Металлы главных подгрупп
  7. Металлы побочных подгрупп
  8. Свойства элементов первых трёх периодов периодической системы
  9. Классификация неорганических веществ
  10. Углерод
  11. Качественный анализ неорганических соединений
  12. Металлы и сплавы
  13. Металлы и неметаллы
  14. Производство металлов
  15. Переходные металлы
  16. Элементы 1 (1А), 2 IIA и 13 IIIA групп и соединения
  17. Элементы 17(VIIA), 16(VIA) 15(VA), 14(IVA) групп и их соединения
  18. Важнейшие S -элементы и их соединения
  19. Важнейшие d элементы и их соединения
  20. Важнейшие р-элементы и их соединения
  21. Производство неорганических соединений и сплавов
  22. Главная подгруппа шестой группы
  23. Главная подгруппа пятой группы
  24. Главная подгруппа четвертой группы
  25. Первая группа периодической системы
  26. Вторая группа периодической системы
  27. Третья группа периодической системы
  28. Побочные подгруппы четвертой, пятой, шестой и седьмой групп
  29. Восьмая группа периодической системы
  30. Водород
  31. Кислород
  32. Озон
  33. Водород
  34. Галогены
  35. Естественные семейства химических элементов и их свойства
  36. Химические элементы и соединения в организме человека
  37. Геологические химические соединения

Лекции по органической химии:

  1. Органическая химия
  2. Углеводороды
  3. Кислородсодержащие органические соединения
  4. Азотсодержащие органические соединения
  5. Теория А. М. Бутлерова
  6. Соединения ароматического ряда
  7. Циклические соединения
  8. Карбонильные соединения
  9. Амины и аминокислоты
  10. Химия живого вещества
  11. Синтетические полимеры
  12. Органический синтез
  13. Элементы 14(IVA) группы
  14. Азот и сера
  15. Растворы кислот и оснований

Тематический тест на свойства соединений серы (часть 2).

Задание №76

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 431

Задание №77

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 412

Задание №78

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 213

Задание №79

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 431

Задание №80

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 214

Задание №81

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 213

Задание №82

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 421

Задание №83

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 241

Задание №84

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 341

Задание №85

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 231

Задание №93

Образец 14% олеума массой 11,4 г растворили в 300 г 10% раствора гидроксида натрия. Рассчитайте массовую долю щелочи в образовавшемся растворе. Ответ приведите в процентах и округлите до десятых.

Решение

Ответ: 6,6

Пояснение:

H2SO4 2NaOH = Na2SO4 2H2O (I)

SO3 2NaOH = Na2SO4 H2O (II)

Рассчитаем массу SO3 в олеуме:

m(SO3) = 11,4 г ⋅ 0,14 = 1,596 г

Рассчитаем его количество вещества:

n(SO3) = m/M = 1,596 г / 80 г/моль = 0,01995 моль

Рассчитаем массу серной кислоты:

m(H2SO4) = m(олеума) — m(SO3) = 11,4 — 1,596 г = 9,804 г

Рассчитаем количество вещества серной кислоты:

m(H2SO4) = m/M = 9,804/98 = 0,1 моль

Гидроксид натрия прореагировал как с серной кислотой, так и с SO3.

Исходя из уравнения реакции (I):

nI(NaOH) = 2n(H2SO4) = 2⋅0,1 = 0,2 моль

Исходя из уравнения реакции (II):

nII(NaOH) = 2n(SO3) = 2⋅0,01995 = 0,0399 моль

Тогда общее количество гидроксида натрия, вступившего в обе реакции, будет составлять:

nобщ.реаг.(NaOH) = nI(NaOH) nII(NaOH) = 0,2 0,0399 = 0,2399 моль

Рассчитаем массу NaOH, вступившего в реакцию:

mобщ.реаг.(NaOH) = nобщ.реаг.(NaOH)⋅M(NaOH) = 0,2399⋅40 = 9,596 г

Рассчитаем массу исходного гидроксида натрия:

mисх.(NaOH) = 300 г ⋅0,1 = 30 г

Тогда, масса оставшегося гидроксида натрия будет равна:

mост.(NaOH) = 30 г — 9,596 г = 20,404 г

Конечная масса полученного раствора будет равна сумме масс олеума и раствора щелочи:

m(конечн.р-ра) = 11,4 300 = 311,4 г

Тогда массовая доля щелочи в конечном растворе будет составлять:

wконечн.(NaOH) = 100% ⋅ 20,404 г/311,4 г = 6,6 %

Задание №96

Образец олеума массой 9 г растворили в необходимом для полной нейтрализации количестве раствора едкого натра. Полученный раствор выпарили досуха. Масса полученного остатка составила 14,2 г. Определите массовую долю серы в исходном образце.

Решение

Ответ: 35,6

Пояснение:

Уравнения реакций:

H2SO4 2NaOH = Na2SO4 2H2O (I)

SO3 2NaOH = Na2SO4 H2O (II)

Как мы видим твердый остаток после упаривания – это сульфат натрия. Рассчитаем его количество вещества:

n(Na2SO4) = m(Na2SO4)/M(Na2SO4) = 14,2/142 = 0,1 моль

Из формулы сульфата натрия мы видим, что в одной его структурной единице содержится 1 атом серы. Поэтому, мы можем записать, что:

n(S) = n(Na2SO4) = 0,1 моль

m(S) = M(S) ⋅ n(S) = 32⋅0,1 = 3,2 г

Вся сера, которая входит в состав сульфата натрия, изначально содержалась в олеуме. Поэтому:

ω(S) = 100% ⋅ m(S) / m(олеума) = 100% ⋅ 3,2 / 9 = 35,6%

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

O2   2F2  →  2OF2

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

S O2 → SO2

  Si O2 → SiO2

1.3.Фосфоргорит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

4P      3O2  →   2P2O3

Но чаще фосфор сгорает до оксида фосфора (V):

4P      5O2  →   2P2O5

1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

    N2  O2→  2NO

1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

2Ca       O2 → 2CaO

Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

    2Na O2→  Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

    K O2→  KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn O2→  2ZnO

Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe O2→  2FeO

4Fe 3O2→  2Fe2O3

3Fe 2O2→  Fe3O4

1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

C     O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C     O2  →  2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

4FeS 7O2→  2Fe2O3 4SO2

Al4C3 6O2→  2Al2O3 3CO2

Ca3P2 4O2→  3CaO P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

2H2S 3O2→  2H2O 2SO2

Аммиакгорит с образованием простого вещества, азота:

4NH3 3O2→  2N2 6H2O

Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 5O2→  4NO 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

CS2 3O2→  CO2 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

2CO O2→  2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например, кислород окисляет гидроксид железа (II):

4Fe(OH)2 O2 2H2O → 4Fe(OH)3

Кислород окисляет азотистую кислоту:

2HNO2 O2 → 2HNO3

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 2O2→  CO2 2H2O

2CH4 3O2→  2CO 4H2O

CH4 O2→  C  2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

2CH2=CH2 O2 → 2CH3-CH=O

Оцените статью
Кислород
Добавить комментарий