- Вступление
- Взаимодействие с другими веществами:
- Вопрос мощности
- Марсоход perseverance извлек кислород из атмосферы красной планеты
- Превращение co2 в топливо
- Применение углекислоты для сварки
- Расчет кислорода в баллонах
- Рисунок 2 — ацетиленовый баллон
- Сложная смесь химических соединений
- Углекислый газ, химические свойства, получение
- Углекислый газ: вред или польза?
Вступление
Горючих ископаемых по существу , содержат углерод (С), водорода (Н) и меньшие пропорции кислорода (O), то азот (N) , из серы (S) и следовых количеств различных других элементов.
Когда это топливо сжигается на воздухе (состоит из азота (N 2) примерно на 79% и кислорода (O 2) около 21%), последний реагирует с компонентами топлива с образованием диоксида углерода, водяного пара (H 2 O), диоксид серы (SO 2) и оксидов азота .
Азот в воздухе не участвует в реакции (за исключением того, что он может частично диссоциировать при высокой температуре, а также давать NOx) и содержится в дымовых газах. Поэтому они состоят в основном из азота, водяного пара и диоксида углерода, а другие компоненты присутствуют только в меньшей пропорции.
Последние, значительные загрязняющие вещества, могут быть удалены химической реакцией: диоксид серы реакцией с известняком или известью с образованием сульфата кальция (CaSO 4);
NOx можно уменьшить реакцией с аммиаком . Химическое удаление углекислого газа сложнее. Однако этот газ является парниковым и считается основным фактором глобального потепления . Среди методов, исследованных для извлечения дымовых газов и лучшего управления углекислым газом, кислородное сжигание кажется многообещающим.
Взаимодействие с другими веществами:
1) Углекислота относится к кислотным оксидам, то есть в сочетании с водой образуется кислота. Однако угольная кислота неустойчива и распадается сразу. Эта реакция имеет обратимый характер:
СО2 H2O ↔ CO2 × H2O (растворение) ↔ Н2СО3
Диоксид углерода вода ↔ угольная кислота
Молекула угольной кислоты
2) При взаимодействии углекислого газа и соединений азота с водородом (аммиаком) в водном растворе происходит разложение до углеаммонийной соли.
2NH3 CO2 H2O = NH4HCO3
Аммиак углекислота = гидрокарбонат аммония
Полученное вещество часто используется в приготовлении хлеба и различных кондитерских изделий.
3) Ход некоторых реакций должен поддерживаться высокими температурами. Примером является производство мочевины при 130 °C и давлении 200 атм., схематически изображаемое так:
2NH3 СО2 → (NH2)2СО H2O
https://www.youtube.com/watch?v=3YPKt9t42Uk
Аммиак диоксид углерода → карбамид вода
Также под воздействием температуры около 800 градусов протекает реакция образования оксида цинка:
Zn CO2 → ZnO CO
Цинк двуокись углерода → оксид цинка оксид углерода
4) Возможно уравнение с гидроксидом бария, при котором выделяется средняя соль.
Ba(OH)2 CO2 = BaCO3 H2O
Гидроксид бария углекислота = карбонат бария оксид водорода.
Применяется для регулировки калориметров по теплоемкости. Также вещество используют в промышленности для производства красных кирпичей, синтетических тканей, фейерверков, гончарных изделий, плитки для ванн и туалетов.
5) Углекислый газ выделяется при реакциях горения.
Горение метана.
CH4 2O2 → CO2 2H2O 891кДж
Метан кислород = углекислота вода (в газообразном состоянии) энергия
Горение этилена
C2H4 3O2 → 2CO2 2H2O Q
Этилен кислород = диоксид углерода оксид водорода энергия
Горение этана
2С2Н6 7О2 → 4CO2 6H2O Q
Этан кислород = двуокись углерода вода энергия
Горение этанола
C2H5OH 3O2 = 3H2O 2CO2 Q
Этанол кислород = вода углекислота энергия
6) Газ не поддерживает горения, этот процесс возможен только с некоторыми активными металлами, например, магнием.
2Mg CO2 = C 2MgO
Магний углекислота = углерод оксид магния.
MgO активно применяется при производстве косметических средств. Вещество используют в пищевой промышленности как пищевую добавку.
7) Двуокись углерода реагирует с гидроксидами с получением солей, которые существуют в двух формах, как карбонаты и бикарбонаты. Например, углекислый газ и гидроксид натрия, согласно формуле, образуют гидрокарбонат Na:
CO2 NaOH → NaHCO3
диоксид углерода гидроксид натрия → гидрокарбонат натрия.
Или же при большем количестве NaOH образуется карбонат Na с образованием воды:
CO2 2 NaOH → Na2CO3 H2O
Диоксид углерода гидроксид натрия → карбонат натрия вода
Кислотно-щелочные реакции углекислоты используются на протяжении веков для затвердевания известкового раствора, что может быть выражено простым уравнением:
Ca(OH)2 CO2 → CaCO3 H2O
Гидроксид кальция двуокись углерода → карбонат кальция оксид водорода
6CO2 6H2O → C6H12O6 6O2
Диоксид углерода вода → глюкоза кислород.
9) Химические свойства углекислоты используются в промышленности при производстве соды, суть этого процесса можно выразить суммарным уравнением:
NaCl CO2 NH3 H2O → NaHCO3 NH4Cl
Хлорид натрия Диоксид углерода аммиак вода → гидрокарбонат натрия хлорид аммония
10) Фенолят Na разлагается при взаимодействии с углекислым газом, при этом малорастворимый фенол выпадает в осадок:
C6H5ONa CO2 H2O = C6H5OH NaHCO3
Фенолят натрия двуокись углерода оксид водорода = фенол гидрокарбонат натрия
11) Пероксид натрия и углекислый газ, взаимодействуя, образуют среднюю соль карбоната Na с выделением кислорода.
2Na2O2 2CO2 → 2N2CO3 O2
Пероксид натрия углекислота → карбонат натрия кислород
Колба с пероксидом натрия
Колба с пероксидом натрия
Образование углекислоты происходит при растворении в воде кальцинированной соды (стиральной соды).
NaHCO3 H2O → CO2 H2O NaOH
Гидрокарбонат натрия вода → углекислота вода гидроксид натрияПри этой реакции (гидролиз по катиону) образуется сильнощелочная среда.
12) CO2 вступает в реакцию с гидроксидом калия, последний образуется путем электролиза хлористого калия.
2KOH CO2 → K2CO3 H2O
Гидроксид калия углекислота → карбонат калия вода
13) Газ в силу своего строения не реагирует с благородными газами, то есть гелием, неоном, аргоном, криптоном, ксеноном, радоном, оганесоном.
Вопрос мощности
По оценкам NASA, первой команде, которая отправится на Марс, для общего жизнеобеспечения миссии ежедневно потребуется примерно 30 киловатт. Полномасштабный MOXIE будет потреблять примерно такое же количество энергии. Хотя солнечные панели могут показаться очевидным выбором для питания марсианского поселения, у них также немало недостатков.
Во-первых, потребуется много солнечных панелей для выработки энергии, необходимой для работы экипажа. А благодаря дневному и ночному циклу Марса и его суровым пылевым бурям, любому поселению, работающему на солнечной энергии, потребуется надежная система хранения уже накопленной мощности.
Абубейкер утверждает, что наиболее надежным решением, вероятно, будет небольшая атомная электростанция. «Это реактор подходящего размера для питания чего-то вроде MOXIE чуть большего масштаба», — говорит он.
С этим согласен инженер-ядерщик Дэйв Постон из Лос-Аламосской национальной лаборатории (LANL). Подобное решение станет эффективной и безопасной альтернативой солнечной энергии: один ядерный реактор может заменить солнечную батарею размером с футбольное поле. По его словам, вы получаете «от реактора больше энергии на килограмм, чем от солнечной энергосистемы».
Эта технология не нова. В период с ноября 2022 года по март 2022 года NASA, лаборатория Национального управления ядерной безопасности (NNSA) Министерства энергетики США и Национальная лаборатория Лос-Аламоса испытали ядерный реактор деления под названием Kilopower Reactor Using Stirling Technology, или KRUSTY.
Спрятанный в пустыне Невада, ядерный реактор успешно вырабатывал пять киловатт электроэнергии — примерно половину мощности, необходимой для питания среднего жилого дома. В прошлом году Национальная лаборатория Лос-Аламоса согласилась передать лицензию на планы строительства реактора Постону и его коллеге по ядерной инженерии из LANL Патрику МакКлюру из компании Space Nuclear Power Corporation из Нью-Мексико, также известной как SpaceNukes.
По словам МакКлюра, лучший способ проверить данную технологию на месте — это отправить на поверхность Марса спускаемый аппарат, оборудованный четырьмя 10-киловаттными реакторами. Этого было бы достаточно, чтобы поддерживать жизнь и работу экипажа из шести человек на время их «марсианских каникул».
Будущие системы Kilopower, расширенные для поддержки более крупных сообществ, смогут генерировать до нескольких мегаватт энергии. По словам Постона, вместо того, чтобы реакторы оставались прикрепленными к посадочному модулю, их нужно было бы либо похоронить под поверхностью Марса, либо установить примерно в полумиле от марсианской колонии, которую они питают. Таким образом исчезает риск того, что они могут быть повреждены при запуске подъемного аппарата.
Постон считает, что Kilopower может быть готов к полетам на другие планеты в течение следующего десятилетия. «Проблема не в нас — мы могли бы построить реактор довольно быстро», — говорит МакКлюр. «Проблема будет в том, чтобы найти кого-нибудь с ракетой-носителем и подходящим оборудованием для ее приземления».
Марсоход perseverance извлек кислород из атмосферы красной планеты
Шестиколесный робот-марсоход Perseverance извлек из атмосферы планеты кислород. Это произошло 20 апреля, на 60-й день пребывания робота на Марсе, сообщает NASA.
Впервые использованная технология под названием «Эксперимент по использованию ресурсов кислорода на Марсе» (MOXIE) может проложить путь к хранению кислорода на планете и использовании его для дыхания астронавтов на поверхности планеты и в качестве топлива для ракет в полетах с нее.
«Это критически важный первый шаг в преобразовании углекислого газа в кислород на Марсе», — сказал Джим Рейтер, заместитель администратора управления космических технологий (STMD) NASA. По его словам, кислород важен не только для дыхания, но и как компонент ракетного топлива. «Будущие исследователи будут зависеть от производства топлива на Марсе, чтобы вернуться домой», — добавил Рейтер.
«Семь минут ужаса»: марсоход Perseverance совершил посадку на Красную планету
Кислород удалось получить благодаря экспериментальному инструменту MOXIE размером с тостер на борту марсохода. После двухчасовой подготовки прибор сумел вырабатывать кислород со скоростью 6 граммов в час. После часа работы он выработал 5,4 грамма, этого достаточно для жизнеобеспечения астронавта в течение десяти минут.
По словам главного исследователя MOXIE Майкла Хехта из обсерватории Массачусетского технологического института, астронавтам на год пребывания на Марсе потребуется одна метрическая тонна кислорода, а для взлета ракеты с четырьмя астронавтами на борту с поверхности Марса потребуется 25 тонн кислорода и 7 тонн ракетного топлива. Транспортировка 25 тонн кислорода с Земли на Марс — дорогостоящая задача, а транспортировка однотонного кислородного конвертера, более крупного и мощного потомка MOXIE, который мог бы произвести эти 25 тонн, будет гораздо более экономичным решением.
Атмосфера Марса на 96% состоит из углекислого газа: прибор работает, отделяя атомы кислорода от молекул углекислого газа, которые состоят из одного атома углерода и двух атомов кислорода. В атмосферу Марса выбрасывается при этом окись углерода. Процесс преобразования требует высоких температур — 1470 градусов по Фаренгейту, или 800 градусов Цельсия. Блок MOXIE сделан из устойчивых к ним материалов. В их числе напечатанные на 3D-принтерах детали из никелевого сплава, которые нагревают и охлаждают газы, и легкий аэрогель, который помогает удерживать тепло. Тонкое золотое покрытие на внешней стороне прибора отражает инфракрасное тепло, удерживая его от излучения наружу и нанесения ущерба другим частям марсохода.
Вдохновляясь братьями Райт: NASA впервые запустило вертолет на Марсе
Расчетная скорость извлечения кислорода — до 10 граммов в час. Прибор будет извлекать кислород по крайней мере еще девять раз в течение марсианского года (почти два года на Земле). Циклы производства кислорода будут проходить в три этапа. На первом этапе проверят функции прибора, на втором — его будут запускать в различных атмосферных условиях — по времени суток и года. На третьем этапе будут опробованы новые режимы работы.
«Это не просто первый инструмент для производства кислорода в другом мире, — сказала директор по демонстрациям технологий в STMD Труди Кортес. — Это первая в своем роде технология, которая поможет будущим миссиям «жить за счет Земли». По ее словам, используя элементы окружающей среды другого мира прибор позволяет производить необходимые ресурсы в месте пребывания. «Этот процесс позволяет нам превращать эти обильные материалы в полезные вещи: топливо, пригодный для дыхания воздух или в сочетании с водородом — воду», — отметила она.
NASA отправило к Марсу самый большой марсоход
Миссия Perseverance, который высадился на Марсе 18 февраля,— это астробиология, в том числе поиск признаков древней микробной жизни. Марсоход будет исследовать геологию планеты и климат прошлого, проложит путь для исследования планеты человеком и станет первой миссией по сбору и хранению марсианских пород и реголита (битого камня и пыли). Последующие миссии NASA в сотрудничестве с Европейским космическим агентством отправят космические аппараты на Марс, чтобы забрать эти образцы с поверхности планеты и вернуть их на Землю для углубленного анализа.
Фото: NASA/JPL-Caltech
Превращение co2 в топливо
Экологи продолжают борьбу с выбросами углекислого газа, генерируемого деятельностью человека, хоть спор о том, виноват ли CO2 в изменении климата, по-прежнему не решен. Например, в Исландии парниковые газы «упаковывают» под землей: там он обретает твердую форму, вступая в химическую реакцию с вулканическими базальтовыми породами. В Швейцарии создали установку, которая «поедает» углекислый газ, всасывая его из воздуха, чтобы затем выпускать его в нужном месте, к примеру, в теплицах на сельскохозяйственных предприятиях для стимулирования роста овощей.
Ученые из Нидерландов предложили использовать процесс электровосстановления CO2 для производства широкого спектра полезных продуктов буквально из воздуха. Это позволит сократить выбросы углекислого газа в разы. Руководитель исследовательской группы Мин Ма (Ming Ma) поясняет: улавливание и использование углерода принесло бы больше пользы, чем широко распространенное сегодня улавливание и хранение углерода. Последний процесс включает в себя выделение CO2 из промышленных и энергетических источников, транспортировку к месту хранения и долгосрочную изоляцию. Предполагается, что такая стратегия помогает бороться с глобальным потеплением, а также загрязнением окружающей среды.
Однако улавливание и использование углерода имеет гораздо большие перспективы. Оно подразумевает электрохимическое восстановление CO2 до различных веществ (от спиртов до топлива).
По словам ученых, диоксид углерода (CO2) можно превратить в монооксид углерода (CO, он же угарный газ), метан (CH4), этилен (C2H4) и даже жидкие продукты, такие как муравьиная кислота (HCOOH), метанол (CH3OH) и этанол (C2H5OH).
Углеводороды с высокой плотностью энергии можно использовать в качестве топлива, а также в качестве исходного сырья в процессе Фишера-Тропша. Это химическая реакция, которая применяется в промышленности для превращения монооксида углерода (CO) и водорода (H2) в различные жидкие углеводороды, такие как метанол или синтетическое топливо (например, дизельное).
Мин Ма и его коллеги исследовали, что происходит на наноуровне, когда в процессе электровосстановления CO2 участвуют различные металлы. В результате ученые пришли к выводу, что можно производить любой продукт на основе углерода или его комбинаций с другими веществами в любом желаемом соотношении. К примеру, при использовании смеси платины и золота можно в относительно больших количествах получать муравьиную кислоту (HCOOH), которая может найти применение в топливных элементах.
Ученые из Института катализа имени Борескова в Новосибирске также придумали способ переработки атмосферного углекислого газа в синтетическое газовое топливо.
Как сообщает издание Сибирского отделения РАН «Наука в Сибири», идея новосибирских ученых заключается в том, что углекислый газ предлагается брать непосредственно из воздуха, вместо того чтобы поглощать из дыма тепловых электростанций, работающих на углеводородном топливе.
Первый этап такого процесса — электролиз воды, в результате которого выделяются водород и кислород, причем последний возвращается назад в атмосферу. А чтобы собрать газ из воздуха, ученые разработали специальный материал — сорбент — на основе оксида алюминия, пропитанного карбонатом калия. Материал «впитывает» газ подобно губке. При нагревании материал отдает углекислый газ, который взаимодействует с водородом в присутствии катализатора, в результате чего получается метан. Получаемое таким образом топливо, по словам разработчиков, можно использовать для обогрева помещений или заправки транспортных средств.
Американские инженеры тоже предложили получать топливо из углекислого газа. Группа инженеров из MIT под руководством Сяо-Ю Ву (Xiao-Yu), Рональда Крейна (Ronald C. Crane) и Ахмеда Гониема (Ahmed Ghoniem) разработала мембранную методику переработки углекислого газа в моноксид углерода, который можно использовать как топливо и сырье для химической промышленности.
Мембрана не пропускает моноксид углерода и другие газы — только кислород. Пропуская через такую мембрану продукты реакции термического разложения углекислого газа, можно получать кислород и газовую смесь с высокой концентрацией CO. Эту смесь можно использовать как топливо саму по себе или в смеси с водородом; возможно также использование в химической промышленности для получения метана, метанола и других видов топлива. В лаборатории ученые уже опробовали некоторые из перечисленных подходов.
Процесс получения CO из CO2 остается энергозатратным, но авторы разработки предлагают устранить этот недостаток, устанавливая мембраны непосредственно на установках, в которых в больших количествах сжигается углеводородное топливо; тогда энергия, необходимая для реакции, будет поступать непосредственно от реактора. Гонием описывает возможность применения мембраны на электростанциях, которые работают на природном газе. Основной продукт его сжигания — углекислый газ, поэтому ученые предлагают делить природный газ на два потока. Газ первого потока сжигать для получения электроэнергии и направлять образовавшийся CO2 в камеру для разложения на CO и O2, а газ второго потока использовать для связывания кислорода. Такой метод может снизить выбросы углекислого газа в атмосферу.
Все вышеописанные технологии требуют доработки, и ученые ищут наиболее эффективные решения, ведь перспектива превращения углекислого газа в полезные продукты выглядит привлекательнее, чем его захоронение.
По материалам:
https://www.vesti.ru/doc.html?id=2933579&cid=2161
http://www.ntv.ru/novosti/1941420/
https://news.rambler.ru/scitech/38539226-amerikanskie-inzhenery-predlozhili-poluchat-toplivo-iz-uglekislogo-gaza/?updated
https://www.vesti.ru/doc.html?id=2760348&cid=2161
https://www.vesti.ru/doc.html?id=2763817&cid=2161
Применение углекислоты для сварки
Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Низкий потенциал ионизации и теплопроводность способствуют образованию горячей зоны в центре столба дуги и как следствие более глубокое проплавление и меньшую ширину шва.
Молекула углекислого газа CO2, попадая в зону сварочной дуги распадается на атомарный кислород О и угарный газ СО. В результате происходит выгорание легирующих элементов металла сварочной ванны и окисление основного металла (возникает окалина, шлак и дым). Реакция окисления расплавленного металла сварного шва имеет следующий вид:
Fe CO2 = FeO CO
Ранее препятствием для применения углекислоты в качестве защитной среды являлось образование большого количества дефектов в сварных швах (преимущественно пор). Поры при сварке возникают в результате кипения затвердевающего металла сварочной ванны от выделения окиси углерода (СО) из-за недостаточной его раскисленности.
При этом поверхность сварного шва сильно окислена и имеет большое количество шлака ввиду окисляющей атмосферы внутри сварочной дуги. Помимо неудовлетворительного эстетического вида, при необходимости дальнейшего нанесения защитного покрытия потребуется дополнительная операция зачистки поверхности.
При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:
CO2=CO O
Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка порошковой проволокой).
Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:
Мэ O = МэO, где Мэ — металл (марганец, алюминий или др.).
Кроме того, и сам углекислый газ реагирует с этими элементами. В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное — кремния, марганца, хрома, ванадия и др.
Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке вольфрамовым электродом — только в ванне.
Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом. Для компенсации выгорания легирующих элементов в сварном шве, необходимо применять сварочную проволоку с повышенным содержанием раскислителей (кремния и марганца).
Уже давно известна зависимость, чем больше сила сварочного тока, тем больше размер капель расплавленного металла. В свою очередь увеличение размера капель электродного металла увеличивает разбрызгивание.
В настоящее время ввиду большого разбрызгивания металла сварочной ванны при сварке в углекислоте все чаще применяют сварочные смеси с аргоном. Производители сварочного оборудования не остались в стороне от данной проблемы и предусматривают специальный режим на сварочных полуавтоматах, при котором уменьшается эффект разбрызгивания.
Еще один путь решения данного вопроса – это использование специальных спреев или жидкостей, которые не позволяют прикипать брызгам к металлу свариваемой детали. В любом случае применение любого из данных методов с лихвой окупит затраты времени и расходных материалов на удаление брызг путем механической зачистки.
При сварке тонких деталей применением оптимальных режимов сварки возможно добиться короткозамкнутого переноса электродного металла и тем самым получить минимальное разбрызгивание. Например, при использовании сварочной проволоки ? 1 мм, силе сварочного тока 150 А и напряжения дуги 16-23 В происходит перенос металла небольшими каплями за счет поверхностного натяжения.
Для MAG сварки толстостенных конструкций целесообразно применение проволоки большого диаметра и, следовательно увеличение силы сварочного тока, увеличение разбрызгивания, что ведет к уменьшению скорости наплавки электродного металла. Для уменьшения разбрызгивания уменьшают скорость подачи сварочной проволоки.
Поэтому применение чистой углекислоты оказывает негативное влияние на производительность сварки и качества сварного шва. Углекислоту в качестве защитного газа рационально применять при сварке порошковой проволокой (FCAW) углеродистых сталей поскольку обеспечивается короткозамкнутый перенос и хорошее качество сварного шва.
Ввиду химической активности углекислого газа по отношению к вольфраму сварку в этом газе ведут только плавящимся электродом.
При выборе защитного газа стоит учитывать не только его стоимость, но и влияние потерь на разбрызгивание, последующую зачистку и общую трудоемкость процесса.
Расчет кислорода в баллонах
Параметры и размеры кислородных баллонов можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров.
По ГОСТ 5583-78 «Кислород газообразный технический и медицинский» (приложение 2), объем газообразного кислорода в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле:
V = K1•Vб,
Vб — вместимость баллона, дм3;
K1 — коэффициент для определения объема кислорода в баллоне при нормальных условиях, вычисляемый по формуле
К1 = (0,968Р 1) * *
Р — давление газа в баллоне, измеренное манометром, кгс/см2;
0,968 — коэффициент для пересчета технических атмосфер (кгс/см2) в физические;
t — температура газа в баллоне, °С;
Z — коэффициент сжигаемости кислорода при температуре t.
Значения коэффициента К1 приведены в таблице 4, ГОСТ 5583-78.
Посчитаем объем кислорода в самом распространенном баллоне в строительстве: объемом 40л с рабочим давлением 14,7МПа (150кгс/см2). Коэффициент К1 определяем по таблице 4, ГОСТ 5583-78 при температуре 15°С:
V = 0,159 • 40 = 6,36м3
Вывод (для рассматриваемого случая): 1 баллон кислорода = 40л = 6,36м3
Таблица 4. ГОСТ 5583-78.
Температура газа в баллоне, °С | Значение коэффициента Ki при избыточном давлении, МПа (кгс/см2) | ||||||||||||||
13,7 (140) | 14,2 (145) | 14,7 (150) | 15,2 (155) | 15,7 (160) | 16,2 (165) | 16,7 (170) | 17,2 (175) | 17,7 (180) | 18,1 (185) | 18,6 (190) | 19,1 (195) | 19,6 (200) | 20,1 (205) | 20,6 (210) | |
-50 | 0,232 | 0,242 | 0,251 | 0,260 | 0,269 | 0,278 | 0,286 | 0,296 | 0,303 | 0,311 | 0,319 | 0,327 | 0,335 | 0,342 | 0,349 |
-40 | 0,212 | 0,221 | 0,229 | 0,236 | 0,245 | 0,253 | 0,260 | 0,269 | 0,275 | 0,284 | 0,290 | 0,298 | 0,305 | 0,312 | 0,319 |
-35 | 0,203 | 0,211 | 0,219 | 0,226 | 0,234 | 0,242 | 0,249 | 0,257 | 0,264 | 0,272 | 0,278 | 0,286 | 0,293 | 0,299 | 0,306 |
-30 | 0,195 | 0,202 | 0,211 | 0,217 | 0,225 | 0,232 | 0,239 | 0,248 | 0,253 | 0,261 | 0,267 | 0,274 | 0,281 | 0,288 | 0,294 |
-25 | 0,188 | 0,195 | 0,202 | 0,209 | 0,217 | 0,223 | 0,230 | 0,238 | 0,243 | 0,251 | 0,257 | 0,264 | 0,270 | 0,277 | 0,283 |
-20 | 0,182 | 0,188 | 0,195 | 0,202 | 0,209 | 0,215 | 0,222 | 0,229 | 0,235 | 0,242 | 0,248 | 0,255 | 0,261 | 0,267 | 0,273 |
-15 | 0,176 | 0,182 | 0,189 | 0,196 | 0,202 | 0,208 | 0,215 | 0,221 | 0,227 | 0,234 | 0,240 | 0,246 | 0,252 | 0,258 | 0,263 |
-10 | 0,171 | 0,177 | 0,183 | 0,189 | 0,195 | 0,202 | 0,208 | 0,214 | 0,220 | 0,226 | 0,232 | 0,238 | 0,244 | 0,250 | 0,255 |
-5 | 0,165 | 0,172 | 0,178 | 0,184 | 0,190 | 0,195 | 0,202 | 0,207 | 0,213 | 0,219 | 0,225 | 0,231 | 0,236 | 0,242 | 0,247 |
0 | 0,161 | 0,167 | 0,172 | 0,179 | 0,184 | 0,190 | 0,196 | 0,201 | 0,207 | 0,213 | 0,219 | 0,224 | 0,229 | 0,235 | 0,240 |
5 | 0,157 | 0,162 | 0,168 | 0,174 | 0,179 | 0,185 | 0,190 | 0,196 | 0,201 | 0,207 | 0,212 | 0,217 | 0,223 | 0,228 | 0,233 |
10 | 0,153 | 0,158 | 0,163 | 0,169 | 0,174 | 0,180 | 0,185 | 0,191 | 0,196 | 0,201 | 0,206 | 0,211 | 0,217 | 0,222 | 0,227 |
15 | 0,149 | 0,154 | 0,159 | 0,165 | 0,170 | 0,175 | 0,180 | 0,186 | 0,191 | 0,196 | 0,201 | 0,206 | 0,211 | 0,216 | 0,221 |
20 | 0,145 | 0,150 | 0,156 | 0,160 | 0,166 | 0,171 | 0,176 | 0,181 | 0,186 | 0,191 | 0,196 | 0,201 | 0,206 | 0,211 | 0,215 |
25 | 0.142 | 0,147 | 0,152 | 0,157 | 0,162 | 0,167 | 0,172 | 0,177 | 0,182 | 0,186 | 0,191 | 0,196 | 0,201 | 0,206 | 0,210 |
30 | 0,139 | 0,143 | 0,148 | 0,153 | 0,158 | 0,163 | 0,168 | 0,173 | 0,177 | 0,182 | 0,187 | 0,192 | 0,196 | 0,201 | 0,206 |
35 | 0,136 | 0,140 | 0,145 | 0,150 | 0,154 | 0,159 | 0,164 | 0,169 | 0,173 | 0,178 | 0,182 | 0,187 | 0,192 | 0,196 | 0,201 |
40 | 0,133 | 0,137 | 0,142 | 0,147 | 0,151 | 0,156 | 0,160 | 0,165 | 0,170 | 0,174 | 0,178 | 0,183 | 0,188 | 0,192 | 0,196 |
50 | 0,127 | 0,132 | 0,136 | 0,141 | 0,145 | 0,149 | 0,154 | 0,158 | 0,163 | 0,167 | 0,171 | 0,175 | 0,180 | 0,184 | 0,188 |
Рисунок 2 — ацетиленовый баллон
Максимальное давление ацетилена в баллоне составляет 3 МПа. Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры:
Температура, °С | -5 | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
Давление, МПа | 1,34 | 1,4 | 1,5 | 1,65 | 1,8 | 1,9 | 2,15 | 2,35 | 2,6 | 3,0 |
Давление наполненных баллонов не должно превышать при 20°С 1,9 МПа.
При открывании вентиля баллона ацетилен выделяется из ацетона и в виде газа поступает через редуктор и шланг в горелку или резак. Ацетон остается в порах пористой массы и растворяет новые порции ацетилена при последующих наполнениях баллона газом. Для уменьшения потерь ацетона во время работы необходимо ацетиленовые баллоны держать в вертикальном положении.
Для полного использования емкости баллона порожние ацетиленовые баллоны рекомендуется хранить в горизонтальном положении, так как это способствует равномерному распределению ацетона по всему объему, и с плотно закрытыми вентилями. При отборе ацетилена из баллона он уносит часть ацетона в виде паров.
Для определения количества ацетилена баллон взвешивают до и после наполнения газом и по разнице определяют количество находящегося в баллоне ацетилена в кг.
Пример. Масса баллона с ацетиленом 89 кг, порожнего — 83 кг, следовательно, количество ацетилена в баллоне равно: по массе — 89-83=6 кг, по объему — 6/1,09=5,5 м3 (1,09 кг/м3 — плотность ацетилена при атмосферном давлении и температуре 20°С).
Масса пустого ацетиленового баллона складывается из массы самого баллона, пористой массы и ацетона. При отборе ацетилена из баллона вместе с газом расходуется 30- 40 г ацетона на 1 м3 ацетилена. При отборе ацетилена из баллона необходимо следить за тем, чтобы в баллоне остаточное давление было не менее 0,05-0,1 МПа.
Использование ацетиленовых баллонов вместо ацетиленовых генераторов дает ряд преимуществ: компактность и простота обслуживания сварочной установки, безопасность и улучшение условий работы, повышение производительности труда газосварщиков.
Причинами взрыва ацетиленовых баллонов могут быть резкие толчки и удары, сильный нагрев (свыше 40°С).
Сложная смесь химических соединений
Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид:
С О2 3,76N2 = СО2 3,76N2
При сгорании 1 кг углерода получается 22,4 / 12 = 1,86 м3 СО2 и 22,4 × 3,76/12 = 7,0 м3 N2.
Аналогично определяют объем (в м3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:
СО2 | N2 | Н2О | SO2 | |
Углерод | 1,86 | 7,00 | – | – |
Водород | – | 21,00 | 11,2 | – |
Сера | – | 2,63 | – | 0,7 |
При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.
В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.
Объем 1 кг азота равен 0,8 м3, а паров воды 1,24 м3. В воздухе при 0 °С и давлении 101325 Па на 1 кг кислорода приходится 3,76 × 22,4 / 32 = 2,63 м3 азота.
На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.
Например, чтобы определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N, 2,5 % S, W = 3,8 %, A = 11,0 %.
Объем продуктов сгорания будет следующий, м3:
Состав продуктов сгорания | СО2 | Н2О | N2 | SO2 |
Углерод | 1,86 × 0,758 = 1,4 | – | 7 × 0,758 = 5,306 | – |
Водород | – | 11,2 × 0,038 = 0,425 | 21 × 0,038 = 0,798 | – |
Сера | – | – | 2,63 × 0,025 = 0,658 | 0,7 × 0,025 = 0,017 |
Азот в горючем веществе | – | – | 0,8 × 0,011 = 0,0088 | – |
Влага в горючем веществе | – | 1,24 × 0,03 = 0,037 | – | – |
Сумма | 1,4 | 0,462 | 6,7708 – 0,0736 = 6,6972 | 0,017 |
Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м3. Итог указывает состав продуктов сгорания каменного угля: объем влажных продуктов сгорания 1 кг каменного угля равен:
Vп.с. = 1,4 0,462 6,6972 0,017 = 8,576 м3/кг.
Углекислый газ, химические свойства, получение
1
H
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Углекислый газ: вред или польза?
СО2 используется во многих сферах. Но, пожалуй, наиболее востребован углекислый газ в пищевой промышленности и кулинарии.
Углекислый газ образуется в дрожжевом тесте под влиянием брожения. Именно его пузырьки разрыхляют тесто, делая его воздушным и увеличивая его объём.
С помощью углекислого газа делают различные освежающие напитки: квас, минеральную воду и другие любимые детьми и взрослыми газировки. Эти напитки пользуются популярностью у миллионов потребителей во всём мире во многом из-за игристых пузырьков, которые так забавно лопаются в бокале и так приятно «колют» в носу.
Может ли углекислый газ, содержащийся в газированных напитках, способствовать гиперкапнии или нанести любой другой вред здоровому организму? Конечно, нет!
Во-первых, углекислый газ, который используется при приготовлении газированных напитков, специально подготовлен для применения в пищевой промышленности. В тех количествах, в которых он содержится в газировках, он абсолютно безвреден для организма здоровых людей.
Во-вторых, большая часть углекислого газа улетучивается сразу после откупоривания бутылки. Оставшиеся пузырьки «испаряются» в процессе питья, оставляя после себя лишь характерное шипение. В итоге в организм попадает ничтожно малое количество углекислого газа.
«Тогда почему врачи порой запрещают пить газированные напитки?» — спросите вы. По мнению кандидата медицинских наук, врача-гастроэнтеролога Алёны Александровны Тяжевой, это связано с тем, что существует ряд заболеваний желудочно-кишечного тракта, при которых предписывается специальная строгая диета. В список противопоказаний попадают не только напитки, содержащие газ, но и многие продукты питания. Здоровый же человек без проблем может включить в свой рацион умеренное количество газированных напитков и время от времени позволять себе стаканчик той же колы.
Вывод: Углекислый газ необходим для поддержания жизни как планеты, так и отдельно взятого организма. СО2 влияет на климат, являясь своеобразным одеялом. Без него невозможен метаболизм: с углекислым газом из организма выходят продукты обмена. А ещё это незаменимый компонент любимых всеми газированных напитков. Именно углекислый газ создаёт игривые пузырьки, щекочущие в носу. При этом для здорового человека он абсолютно безопасен.