- Основное уравнение статики атмосферы
- Атмосферное давление
- Ветер и турбулентность
- Влажноадиабатические изменения температуры
- Водяной пар в воздухе
- Давление в баллоне с кислородом: хранение и транспортировка
- Жидкие и твердые примеси к атмосферному воздуху
- Опасные факторы и меры безопасности
- Плотность воздуха
- Применение при сварке и резке
- Применения барометрической формулы
- Пример: рассчитайте объем для 1 кг воздуха:
- Рассчитать объем воздуха:
- Состав сухого воздуха у земной поверхности
- Теория:
- Технический кислород
- Упругость водяного пара и относительная влажность
Основное уравнение статики атмосферы
Теперь поставим вопрос: по какому закону меняется атмосферное давление с высотой?
Возьмем вертикальный столб воздуха с поперечным сечением, равным единице, и выделим в этом столбе бесконечно тонкий слой, ограниченный снизу поверхностью на высоте z, а сверху — поверхностью на высоте z dz; толщина слоя, таким образом, dz.
На нижнюю поверхность выделенного элементарного объема смежный воздух действует с силой давления, направленной снизу вверх; величина этой силы на рассматриваемую поверхность с площадью, равной единице, и будет давлением воздуха р на этой поверхности.
Кроме того, воздух в рассматриваемом элементарном объеме испытывает силу тяжести, которая направлена вниз и равна ускорению силы тяжести g (ускорению свободно падающего тела), умноженному на массу воздуха во взятом объеме. Так как при поперечном сечении, равном единице, объем равен dz, то масса воздуха в нем равна ρdz, где ρ — плотность воздуха, а сила тяжести равна gρdz.
Допустим, что в атмосфере существует равновесие также и в вертикальном направлении, т. е. что взятый объем воздуха не имеет никакого ускорения также и по вертикали и, таким образом, остается на одном и том же уровне, несмотря на наличие веса. Это значит, что сила тяжести (вес) и силы давления уравновешиваются.
Вниз направлены сила давления p dp и вес gρdz; возьмем их с отрицательным знаком. Вверх направлена сила давления р, которую возьмем с положительным знаком. Сумму всех этих трех сил приравняем нулю и, таким образом, получим dp = -gρdz. (1)
Отсюда следует, что при положительном dz имеем отрицательное dp, т. е. что с высотой атмосферное давление падает. При этом разность давлений на нижней и верхней границах рассматриваемого элементарного объема равна весу воздуха в этом объеме.
Уравнение (1) носит название основного уравнения статики атмосферы. Это дифференциальное уравнение говорит о том, как меняется давление при бесконечно малом приросте высоты.
Основное уравнение статики можно написать еще так: -(1/ρ)*(dp/dz) — g = 0
Величина -dp/dz падение давления на единицу прироста высоты, т. е. вертикальный барический градиент (вертикальный градиент давления). Это равнодействующая сил давления, направленных сверху и снизу на единицу нашего объема.
Разделив ее на плотность ρ, мы получим силу вертикального барического градиента, отнесенную к единице массы и направленную вверх.
Второй член — это сила тяжести, действующая на ту же единицу массы и направленная вниз. Она равна силе барического градиента, но направлена в противоположную сторону. Следовательно, основное уравнение статики выражает условие равновесия между двумя силами, действующими на единицу массы воздуха по вертикали, — силой вертикального барического градиента и силой тяжести.
Выше было показано, что бесконечно малая разность давлений равна весу элементарного объема воздуха с толщиной dz. Следовательно, и конечная разность давлений между нижним и верхним уровнем равна весу воздушного столба между этими уровнями.
Атмосферное давление
Всякий газ производит давление на ограничивающие его стенки, т. е. действует на эти стенки с какой-то силой давления, направленной перпендикулярно (нормально) к стенке. Числовую величину этой силы давления, отнесенную к единице площади, и называют давлением.
В каждой точке атмосферы имеется определенная величина атмосферного давления, или давления воздуха.
Атмосферное давление можно выразить, например, в граммах или килограммах веса на один квадратный сантиметр или метр. На уровне моря оно близко к одному килограмму на квадратный сантиметр. В метеорологии его выражают, однако, в других единицах.
С давних пор принято выражать атмосферное давление в миллиметрах ртутного столба. Это значит, что давление атмосферы сравнивают с эквивалентным ему давлением столба ртути. Когда говорят, например, что атмосферное давление на земной поверхности в данном месте равно 750 мм, это значит, что столб ртути высотою 750 мм давил бы на земную поверхность так же, как давит воздух.
Выражение давления в миллиметрах ртутного столба появилось в метеорологии не случайно. Оно связано с устройством основного прибора для измерения атмосферного давления — ртутного барометра. В этом приборе, известном из элементарного курса физики, атмосферное давление как раз уравновешивается давлением столба ртути; по изменениям высоты ртутного столба можно судить об изменениях атмосферного давления.
На уровне моря среднее атмосферное давление близко к 760 мм рт. ст.
В отдельных случаях давление может меняться на уровне моря в пределах 150 мм рт. ст. С высотой атмосферное давление быстро убывает.
В настоящее время в метеорологии давление выражают в абсолютных единицах — миллибарах (мб). Один миллибар есть давление, которое сила в 1000 дин производит на площадь в один квадратный сантиметр. Среднее атмосферное давление на уровне моря — 760 мм рт. ст.
Ветер и турбулентность
В зависимости от распределения атмосферного давления воздух постоянно перемещается в горизонтальном направлении. Это горизонтальное перемещение называется ветром. Скорость и направление ветра все время меняются. Средние скорости ветра у земной поверхности близки к 5-10 м/сек.
К горизонтальному переносу воздуха присоединяются и вертикальные составляющие. Они обычно малы по сравнению с горизонтальным переносом, порядка сантиметров или десятых долей сантиметра в секунду. Только в особых условиях, при так называемой конвекции, в небольших участках атмосферы вертикальные составляющие скорости движения воздуха могут достигать нескольких метров в секунду.
Ветер всегда обладает турбулентностью. Это значит, что отдельные количества воздуха в потоке ветра перемещаются не по параллельным путям. В воздухе возникают многочисленные беспорядочно движущиеся вихри и струи разных размеров.
Турбулентность возникает вследствие различия скоростей ветра в смежных слоях воздуха. Особенно велика она в нижних слоях атмосферы, где скорость ветра быстро растет с высотой. Отдельные количества воздуха поднимаются вверх, если их температура выше, а, стало быть, плотность меньше, чем температура и плотность окружающего воздуха.
Напротив, количества воздуха более холодные и плотные, чем окружающий воздух, опускаются вниз. Такое перемешивание воздуха за счет различий плотности происходит тем интенсивнее, чем быстрее падает температура с высотой, т. е. чем больше вертикальный градиент температуры.
С такой упорядоченной конвекцией связано образование мощных облаков вертикального развития — кучевых и кучево-дождевых (ливневых). Для возникновения конвекции такого рода необходимо, чтобы вертикальный градиент температуры был очень велик, а именно близок к 1°/100 м или еще больше, по крайней мере до того уровня, начиная с которого возникают облака.
Влажноадиабатические изменения температуры
С адиабатическим подъемом влажного ненасыщенного воздуха связано такое важное изменение, как приближение его к состоянию насыщения. Температура воздуха при его подъеме понижается; поэтому на какой-то высоте достигается насыщение. Эта высота называется уровнем конденсации.
При дальнейшем подъеме влажный насыщенный воздух охлаждается иначе, чем ненасыщенный. В нем происходит конденсация, а при конденсации выделяется в значительных количествах скрытая теплота парообразования, или теплота. Выделение этой теплоты замедляет понижение температуры воздуха при подъеме.
Поэтому в поднимающемся насыщенном воздухе температура падает уже не по уравнению Пуассона, а по влажноадиабатическому закону. Она падает тем медленнее, чем больше влагосодержание воздуха в состоянии насыщения (что в свою очередь зависит от температуры и давления).
На каждые 100 м подъема насыщенный воздух при давлении 1000 мб и температуре 0° охлаждается на 0,66 , при температуре 20° — на 0,44° и при температуре -20° — на 0,88°. При более низком давлении падение температуры соответственно меньше. Падение температуры в насыщенном воздухе при подъеме его на единицу высоты (100 м) называют влажноадиабатическим градиентом.
При очень низких температурах, которые получает воздух при подъеме в высокие слои атмосферы, водяного пара в нем остается немного и выделение теплоты конденсации поэтому также мало. Падение температуры при подъеме в таком воздухе приближается к падению в сухом воздухе.
Иначе говоря, влажноадиабатический градиент при низких, температурах приближается по величине к сухоадиабатическому.
При опускании насыщенного воздуха процесс может происходить по-разному в зависимости от того, содержит ли воздух жидкие продукты конденсации (капельки и кристаллы), или они уже целиком выпали из воздуха в виде осадков.
Если в воздухе нет продуктов конденсации, то воздух, как только температура в нем начнет при опускании расти, сразу станет ненасыщенным. Поэтому воздух, опускаясь, будет нагреваться по сухоадиабатическому закону, т. е. на 1°/100 м. Если же в воздухе есть капельки и кристаллы, то они при опускании и нагревании воздуха будут постепенно испаряться.
При этом часть тепла воздушной массы перейдет в скрытую теплоту парообразования, и потому повышение температуры при опускании замедлится. В результате воздух останется насыщенным до тех пор, пока все продукты конденсации не перейдут в газообразное состояние.
А температура в нем будет в это время повышаться по влажноадиабатическому закону: не на 1°/100 м, а на меньшую величину — именно на такую, на какую понизилась бы температура в восходящем насыщенном воздухе при тех же значениях температуры и давления.
Водяной пар в воздухе
Процентное содержание водяного пара во влажном воздухе у земной поверхности составляет в среднем от 0,2% в полярных широтах до 2,5% у экватора, а в отдельных случаях колеблется почти от нуля до 4%. В связи с этим становится переменным и процентное соотношение других газов во влажном воздухе.
Водяной пар непрерывно поступает в атмосферу путем испарения с водных поверхностей, с влажной почвы и путем транспирации растений, при этом в разных местах и в разное время он поступает в различных количествах. От земной поверхности он распространяется вверх, а воздушными течениями переносится из одних мест Земли в другие.
В атмосфере может возникать состояние насыщения. В таком состоянии водяной пар содержится в воздухе в количестве, предельно возможном при данной температуре. Водяной пар при этом называют насыщающим, а воздух, содержащий его, насыщенным.
Состояние насыщения обычно достигается при понижении температуры воздуха. Когда это состояние достигнуто, то при дальнейшем понижении температуры часть водяного пара становится избыточной и конденсируется, переходит в жидкое или твердое состояние. В воздухе возникают водяные капельки и ледяные кристаллики облаков и туманов.
С водяным паром в воздухе и с его переходами из газообразного состояния в жидкое и твердое связаны важнейшие процессы погоды и особенности климата. Наличие водяного пара в атмосфере существенно сказывается на тепловых условиях атмосферы и земной поверхности.
Водяной пар сильно поглощает длинноволновую инфракрасную радиацию, которую излучает земная поверхность. В свою очередь и сам он излучает инфракрасную радиацию, большая часть которой идет к земной поверхности. Это уменьшает ночное охлаждение земной поверхности и тем самым также нижних слоев воздуха.
На испарение воды с земной поверхности затрачиваются большие количества тепла, а при конденсации водяного пара в атмосфере это тепло отдается воздуху. Облака, возникающие в результате конденсации, отражают и поглощают солнечную радиацию на ее пути к земной поверхности.
Давление в баллоне с кислородом: хранение и транспортировка
Давление кислородного баллона важный показатель. В этой статье рассказывается, как рассчитать количество кислорода. Какое давление оставляют в баллоне после использования.
Кислород – газ не имеющий цвет, вкус и запах. Проявляется в светло — голубым цветом когда температура опускается до -183 гр. С. Замерзает при температуре -218,8 гр.С. Плотность 1,43 кг./м3. Активно поддерживает процесс горения, поэтому используется для резки металла.
Получают кислород из воздуха очищая от примесей воздушную смесь. После сжатия и охлаждения, воздух делится на азот и кислород. Азот закипает быстрее кислорода. Нагревая медленно газы, азот испаряется, кислород остается в емкости.
Транспортируется в металлических баллонах синего цвета с надписью «КИСЛОРОД», наносится краской черного цвета. Давление в баллоне с кислородом измеряется манометром и составляет 150 – 200 кгс/см2 или 14,7 – 19,6 МПа. Кислородное давление регулируется ГОСТом 5583-78.
В сварочных работах применяют технический кислород. Он делится на 2 сорта по ГОСТ 5583-78. 1 сорт содержит – 99,8% О2 2 сорт содержит – 99,5% О2.
Чтобы определить количество кислорода в баллоне применяют формулу Vk = VbPk, Vk — объем кислорода в баллоне, измеряется в литрах; Vb — водная часть баллона, измеряется в литрах; Рk — давление кислорода в баллоне, измеряется в кгс/см2. Исходя из полученных результатов, в полном баллоне количество кислорода равно: 40*150=6000 л, что равно 6 м3, давление 760 мм.рт.ст.
Давление в кислородном баллоне меняется с изменением температуры. T -40C — 120 кгс/см2 T -20C — 130 кгс/см2 T -0C — 140 кгс/см2 T 20C — 150 кгс/см2 = стандартный показатель. T 40C — 160 кгс/см2 Благоприятная температура хранения кислорода 20 гр.С.
Жидкие и твердые примеси к атмосферному воздуху
Кроме перечисленных выше атмосферных газов, в воздух местами могут проникать другие газы, особенно соединения, возникающие при сгорании топлива (окислы серы, углерода, фосфора и др.). Наиболее заражается такими примесями воздух больших городов и промышленных районов.
В состав атмосферы входят также твердые и жидкие частички, взвешенные в атмосферном воздухе. Кроме водяных капелек и кристаллов, возникающих в атмосфере при конденсации водяного пара, это пыль почвенного и органического происхождения; твердые частички дыма, сажи, пепла и капельки кислот, попадающие в воздух при лесных пожарах, при сжигании топлива, при вулканических извержениях; частички морской соли, попадающие в воздух при разбрызгивании морской воды во время волнения; микроорганизмы (бактерии); пыльца, споры; наконец, космическая пыль, попадающая в атмосферу (около миллиона тонн в год) из межпланетного пространства, а также возникающая при сгорании метеоров в атмосфере.
Небольшую часть перечисленных примесей составляет крупная пыль, с частичками радиусом более 5 мк. Почти 95% частичек имеет радиусы менее 5 мк. Вследствие такой малости они могут длительное время удерживаться в атмосфере во взвешенном состоянии. Удаляются из атмосферы они главным образом при выпадении осадков, присоединяясь к капелькам и снежинкам.
Все эти так называемые, аэрозольные примеси, или аэрозоли, в наибольшем количестве содержатся в самых нижних слоях атмосферы: ведь основной их источник — земная поверхность. Особенно загрязнен ими воздух больших городов. Не говоря о вредных газовых примесях (SO2, CO и др.), на каждый кубический сантиметр воздуха здесь приходятся десятки тысяч аэрозольных частичек, а за год на каждый квадратный километр выпадают из атмосферы сотни тонн аэрозолей.
С высотой число взвешенных частичек быстро убывает; на высотах 5-10 км их всего десятки на кубический сантиметр.
В общем, в атмосферном столбе над каждым квадратным сантиметром земной поверхности содержится 108-109 аэрозольных частичек. Общий их вес в атмосфере не менее 108 т. Это огромное число; но оно мало по сравнению со всей массой атмосферы, которая, как мы увидим дальше, определяется в 5*1015 т.
Бактерии в центральных частях океанов встречаются в количестве нескольких единиц на кубический метр воздуха; в больших городах их уже тысячи и десятки тысяч в том же объеме.
От количества и рода аэрозольных примесей зависят явления поглощения и рассеяния радиации в атмосфере, т. е. ее большая или меньшая прозрачность для радиации. Наличие взвешенных частичек создает в атмосфере также ряд оптических явлений, свойственных коллоидным растворам.
Наиболее крупные аэрозольные частички, обладающие гигроскопическими свойствами, играют в атмосфере роль ядер конденсации, т. е. центров, к которым присоединяются молекулы водяного пара, образуя водяные капельки.
Аэрозольные примеси к воздуху могут легко переноситься воздушными течениями на большие расстояния. Песчаная пыль, попадающая в воздух над пустынями Африки и Передней Азии, неоднократно выпадала в больших количествах на территории Южной и Средней Европы.
Дым и пепел больших вулканических извержений неоднократно распространялись в высоких слоях атмосферы на огромные расстояния, окутывая весь Земной шар. Помутнение воздуха и аномально красная окраска зорь наблюдались в течение многих месяцев после извержений.
Опасные факторы и меры безопасности
- Кислород не токсичен, сам по себе не взрывоопасен и не горюч, однако является сильным окислителем и активно поддерживает горение различных материалов, в особенности органических и других горючих веществ; поэтому для работы в соприкосновении с кислородом должны применяться только разрешенные для этого материалы;
- При контакте сжатого кислорода под давлением более 30 кгс/см2 с жирами и маслами происходит их мгновенное окисление, сопровождающееся выделением теплоты, что может привести к их воспламенению, а при определенных условиях – к взрыву; в связи с этим при работе с кислородом необходимо следить, чтобы баллоны, оборудование и одежда персонала не имели следов жиров и масел;
- Такие вещества как дерево, уголь, бумага, асфальт и др., пропитанные жидким кислородом, способны детонировать;
- Во избежание пожаров содержание кислорода в воздухе рабочих помещений не должно быть больше 23% по объему; помещения, в которых возможно превышение объемной доли кислорода, должны оснащаться вытяжной вентиляцией и средствами контроля воздуха; в таких помещениях необходимо ограничивать пребывание людей и исключать присутствие легковоспламеняющихся веществ;
- После нахождения в среде с повышенным содержанием кислорода запрещается приближаться к огню, курить, необходимо проветрить одежду в течение 30 минут;
- Жидкий кислород поражает слизистую оболочку глаз, а при попадании на кожу вызывает обморожение ткани; отбор проб сжиженного газа должен производиться в защитных очках и рукавицах;
- Баллоны и трубопроводы, предназначенные для транспортирования кислорода, нельзя использовать для хранения и транспортирования других газов; необходимо применять меры для предотвращения загрязнения баллонов маслом, их соударений, падений, а также нужно предохранять их от нагревания источниками тепла и атмосферных осадков.
Плотность воздуха
Плотность воздуха непосредственно не измеряется: она вычисляется с помощью уравнения состояния газов. Применяя уравнение состояния газов к сухому воздуху, следует ввести числовое значение газовой постоянной для сухого воздуха Rd, равное 2,87*106, если ρ и р взяты в системе единиц CGS (давление в дин/см2 и плотность в г/см3).
Найдем теперь выражение для плотности влажного воздуха с температурой Т, давлением р и упругостью водяного пара е. Можно представлять влажный воздух как смесь сухого воздуха и водяного пара. Из общего давления воздуха р на долю сухого воздуха приходится давление р — e. Следовательно, для этой части смеси, для сухого воздуха, уравнение состояния напишется так:
ρd = (p-e)/RdT
Для водяного пара, находящегося в смеси, уравнение состояния напишётся
ρw = 0,623e/RdT
Уравнение состояния для влажного воздуха окончательно напишётся так:
ρ´ = (p/RdT)*(1-0,377e/p)
Это и будет выражение для плотности влажного воздуха. Не забудем, что Rd здесь — газовая постоянная для сухого воздуха.
Влажный воздух несколько менее плотен, чем сухой воздух при тех же значениях давления и температуры. Это объясняется тем, что водяной пар менее плотен, чем сухой воздух.
Плотность воздуха в каждом месте непрерывно меняется во времени. Кроме того, она сильно меняется с высотой, потому что с высотой меняются также атмосферное давление и температура воздуха. Давление с высотой всегда уменьшается, а вместе с ним убывает и плотность.
Температура с высотой по большей части понижается, по крайней мере в нижних 10-15 км атмосферы. Но падение температуры влечет за собой повышение плотности. В результате совместного влияния изменения давления и температуры плотность с высотой, как правило, понижается, но не так сильно, как давление.
Если бы плотность воздуха не менялась с высотой, а оставалась на всех уровнях такой же, как у земной поверхности, то высота атмосферы получилась бы около 8000 м. Указанная высота (8000 м) называется высотой однородной атмосферы. В действительности плотность воздуха с высотой убывает, и потому истинная высота атмосферы равняется многим тысячам километров.
Применение при сварке и резке
Кислород – важнейший газ для сварки и резки. При сжигании горючего газа в воздухе образуется пламя с температурой не более 2000°C, а в технически чистом кислороде она может превышать 2500–3000°C. Именно такая температура пламени практически пригодна для сварки многих металлов.
При газопламенной обработке обычно используется кислород с объемным содержанием 99,2–99,5% и выше. Для неответственных видов газовой сварки, пайки, поверхностной закалки и других способов нагрева газовым пламенем может применяться кислород чистотой 92–98%.
Для сварки и резки используют кислород в газообразном виде, поступающий от баллона, газификационной установки (СГУ-1, СГУ-4, СГУ-7К, СГУ-8К, ГХ-0,75, ГХК-3 и др.) или автономной станции (КГСН-150, К-0,15, К-0,4, К-0,5 и др.). При значительных объемах потребления кислород безопаснее и экономически целесообразнее хранить и транспортировать в жидком, а не газообразном виде, несмотря на неизбежные потери при испарении сжиженного газа.
Превращение жидкого кислорода в газообразный осуществляется в газификационных установках – насосных или безнасосных. Примером насосной установки может служить стационарная установка АГУ-2М, предназначенная для газификации непереохлажденного кислорода и наполнения реципиентов и баллонов под давлением до 240 кгс/см2 (24 МПа).
При испарении 1 л жидкого кислорода образуется около 860 л газообразного (при нормальном атмосферном давлении и температуре 20°С). При транспортировке жидкого кислорода масса тары, приходящаяся на 1кг кислорода, в 10 и более раз меньше, чем при транспортировке газообразного. При хранении, перевозке и газификации сжиженного газа неизбежны потери на его испарение.
Расчета объема газообразного кислорода в баллоне.
Для расчета объема газообразного кислорода в баллоне в м3 при нормальных условиях используют формулу (ГОСТ 5583-78):
V = K1 • Vб,
где K1 – коэффициент, Vб – вместимость баллона в дм3 (л).
Некоторые значения коэффициента K1 для расчета объема газообразного кислорода при нормальных условиях
t газа в бал- лоне, °С | Значение K1 при избыточном давлении, кгс/см2 (МПа) | |||||||||||
140 (13,7) | 145 (14,2) | 150 (14,7) | 155 (15,2) | 160 (15,7) | 165 (16,2) | 170 (16,7) | 175 (17,2) | 180 (17,7) | 185 (18,1) | 190 (18,6) | 195 (19,1) | |
-50 | 0,232 | 0,242 | 0,251 | 0,260 | 0,269 | 0,278 | 0,286 | 0,296 | 0,303 | 0,311 | 0,319 | 0,327 |
-40 | 0,212 | 0,221 | 0,229 | 0,236 | 0,245 | 0,253 | 0,260 | 0,269 | 0,275 | 0,284 | 0,290 | 0,298 |
-30 | 0,195 | 0,202 | 0,211 | 0,217 | 0,225 | 0,232 | 0,239 | 0,248 | 0,253 | 0,261 | 0,267 | 0,274 |
-20 | 0,182 | 0,188 | 0,195 | 0,202 | 0,209 | 0,215 | 0,222 | 0,229 | 0,235 | 0,242 | 0,248 | 0,255 |
-10 | 0,171 | 0,177 | 0,183 | 0,189 | 0,195 | 0,202 | 0,208 | 0,214 | 0,220 | 0,226 | 0,232 | 0,238 |
0 | 0,161 | 0,167 | 0,172 | 0,179 | 0,184 | 0,190 | 0,196 | 0,201 | 0,207 | 0,213 | 0,219 | 0,224 |
10 | 0,153 | 0,158 | 0,163 | 0,169 | 0,174 | 0,180 | 0,185 | 0,191 | 0,196 | 0,201 | 0,206 | 0,211 |
20 | 0,145 | 0,150 | 0,156 | 0,160 | 0,166 | 0,171 | 0,176 | 0,181 | 0,186 | 0,191 | 0,196 | 0,201 |
30 | 0,139 | 0,143 | 0,148 | 0,153 | 0,158 | 0,163 | 0,168 | 0,173 | 0,177 | 0,182 | 0,187 | 0,192 |
40 | 0,133 | 0,137 | 0,142 | 0,147 | 0,151 | 0,156 | 0,160 | 0,165 | 0,170 | 0,174 | 0,178 | 0,183 |
50 | 0,127 | 0,132 | 0,136 | 0,141 | 0,145 | 0,149 | 0,154 | 0,158 | 0,163 | 0,167 | 0,171 | 0,175 |
Характеристики марок газообразного технического кислорода (ГОСТ 5583-78)
Параметр | Кислород газообразный технический | |
Первого сорта | Второго сорта | |
Объемная доля кислорода O2, %, не менее | 99,7 | 99,5 (в ряде случаев – 99,2) |
Объемная доля водяных паров, %, не более | 0,007 | 0,009 |
Объемная доля водорода H2, %, не более (только для кислорода, полученного электролизом воды) | 0,3 | 0,5 |
Содержание углекислоты CO2, окиси углерода CO, газообразных кислот и оснований, озона O3 и других газов-окислителей | Не нормируется | |
Содержание щелочи (только для кислорода, полученного электролизом воды) | Кусок фильтровальной бумаги (смоченный раствором фенолфталеина, разбавленного водой в соотношении 1:10) в стеклянной трубке с пропускаемым кислородом (0,1–0,2 дм3/мин в течение 8–10 минут) не должен окраситься в красный или розовый цвет | |
Запах | Не нормируется |
Применения барометрической формулы
С помощью барометрической формулы можно решить три задачи:
1) зная давление на одном уровне и среднюю температуру столба воздуха, найти давление на другом уровне;
2) зная давление на обоих уровнях и среднюю температуру столба воздуха, найти разность уровней (барометрическое нивелирование);
3) зная разность уровней и величины давления на них, найти среднюю температуру столба воздуха.
Важным вариантом первой задачи, поставленной выше, является приведение давления к уровню моря. Зная давление на некоторой станции, расположенной на высоте z над уровнем моря, и температуру t на этой станции, вычисляют сначала воображаемую среднюю температуру между рассматриваемой станцией и уровнем моря (в действительности атмосферного столба между станцией и уровнем моря не будет).
Средний вертикальный градиент температуры в тропосфере принимается равным 0,6° на 100 м. Следовательно, если станция имеет высоту 200 м и температура на ней 16°, то для уровня моря принимается температура 17,2°, а средняя температура столба между станцией и уровнем моря 16,6°.
Приведение давления к уровню моря является очень важной операцией. На приземные синоптические карты всегда наносится давление, приведенное к уровню моря. Этим исключается влияние различий в высотах станций на величины давления и становится возможным выяснить горизонтальное распределение давления.
Пример: рассчитайте объем для 1 кг воздуха:
Рассчитайте объем для 1 кг воздуха при нормальных условиях.
V = m · Vm / M = 1 000 грамм · 22,4 л/моль / 28,966 г/моль = 773,32 литра.
Рассчитайте объем для 1 кг воздуха при 30 градусах Цельсия (303,15 К), давлении 30 кПа.
V = m·R ·T / p·M = 1 000 грамм · 8,314 Дж/(моль⋅К)
Рассчитать объем газа: азота, водорода, воздуха, гелия,озона, кислорода, углекислого газа, хлора
Коэффициент востребованности 1 606
Рассчитать объем воздуха:
Рассчитать объем воздуха (газа) при нормальных условиях, если известна его масса, можно по формуле: V = m · Vm / M = ν · Vm. Рассчитать объем воздуха (газа), если известна его масса, температура и давление, можно по формуле: V = m·R ·T / (p·M) = ν ·R ·T / p.
Расчет объема воздуха (газа)
Теория расчета объема газа
Пример: Рассчитайте объем для 1 кг воздуха
Рассчитать объем газа: азота, водорода, воздуха, гелия,озона, кислорода, углекислого газа, хлора
Состав сухого воздуха у земной поверхности
Атмосфера состоит из смеси газов, называемой воздухом, в которой находятся во взвешенном состоянии жидкие и твердые частички. Общая масса последних незначительна в сравнении со всей массой атмосферы.
Атмосферный воздух у земной поверхности, как правило, является влажным. Это значит, что в его состав, вместе с другими газами, входит водяной пар, т.е. вода в газообразном состоянии. Содержание водяного пара в воздухе меняется в значительных пределах, в отличие от других составных частей воздуха: у земной поверхности оно колеблется между сотыми долями процента и несколькими процентами.
Воздух без водяного пара называют сухим воздухом. У земной поверхности сухой воздух на 99% состоит из азота (78% по объему или 76% по массе) и кислорода (21% по объему или 23% по массе). Оба эти газа входят в состав воздуха у земной поверхности в виде двухатомных молекул (N2 и О2).
Оставшийся 1% приходится почти целиком на аргон (Аr). Всего 0,08% остается на углекислый газ (СО2). Многочисленные другие газы входят в состав воздуха в тысячных, миллионных и еще меньших долях процента. Это криптон, ксенон, неон, гелий, водород, озон, йод, радон, метан, аммиак, перекись водорода, закись азота и др.
Все перечисленные выше газы всегда сохраняют газообразное состояние при наблюдающихся в атмосфере температурах и давлениях не только у земной поверхности, но и в высоких слоях.
Процентный состав сухого воздуха у земной поверхности очень постоянен и практически одинаков повсюду. Существенно меняться может только содержание углекислого газа. В результате процессов дыхания и горения его объемное содержание в воздухе закрытых, плохо вентилируемых помещений, а также промышленных центров может возрастать в несколько раз — до 0,1—0,2%. Совершенно незначительно меняется процентное содержание азота и кислорода.
Теория:
Рассчитать объем воздуха (газа) при нормальных условиях, если известна его масса, можно по формуле:
V = m · Vm / M = ν · Vm,
где
V – объем газа, л,
ν – количество вещества, моль,
Vm – молярный объем газа, л/моль, Vm = 22,4 л/моль,
ν = m / M,
m – масса газа, г,
М – молярная масса газа, г/моль,
M(воздух) = 28,966 г/моль,
Нормальные условия: 0 оС (или 273,15 К), 101,325 кПа или 1 атм.
Рассчитать объем воздуха (газа), если известна его масса, температура и давление, можно по формуле:
V = m·R ·T / (p·M) = ν ·R ·T / p,
где
V – объем газа, л,
ν – количество вещества, моль,
ν = m / M,
m – масса газа, г,
М – молярная масса газа, г/моль,
M(воздух) = 28,966 г/моль,
R – универсальная газовая постоянная, R ≈ 8,314 Дж/(моль⋅К),
T – термодинамическая температура, К.
P – давление, кПа.
Технический кислород
Транспортирование и хранение кислорода
Кислород из воздуха получают на специальных кислородных заводах. Поэтому существенное значение приобретает транспортирование и хранение кислорода. Кислород обычно хранится и транспортируется в газообразном виде в стальных баллонах под давлением 150 ат.
(1- колпак; 2- вентиль; 3- кольцо; 4- горловина; 5- башмак)
Кислородный баллон (см рис.) представляет собой стальной цилиндр со сферическим днищем и горловиной для крепления запорного вентиля. На нижнюю часть баллона насаживают башмак, позволяющий ставить баллон вертикально. На горловине имеется кольцо с резьбой для навертывания защитного колпака.
Внутренняя коническая резьба горловины необходима для ввертывания вентиля. Баллоны изготовляют из стальных цельнотянутых труб углеродистой стали с пределом прочности не ниже 65 кГ/мм2, пределом текучести не ниже 38 кГ/мм2 и относительным удлинением не ниже 15%.
Кислородные баллоны изготовляют для разных целей, емкостью 0,4-50 л. В сварочной технике применяются главным образом баллоны емкостью 40 л. Такой баллон имеет наружный диаметр 219 мм, длину корпуса 1390 мм, толщину стенки 7 мм; весит баллон без кислорода около 60 кг. Вес баллона из углеродистой стали для рабочего давления 150 ат на 1 л емкости составляет 1,6-1,7 кг.
В последнее время начато освоение производства баллонов из легированных сталей, что дает возможность повысить рабочее давление баллонов и снизить их вес для той же емкости и рабочего давления. Чтобы избежать опасных ошибок при наполнении и использовании баллонов, их для разных газов окрашивают в различные цвета; кроме того, присоединительный штуцер запорного вентиля имеет различные размеры и устройство.
Кислородные баллоны окрашивают снаружи в голубой цвет и делают па них надпись черными буквами «Кислород». Через каждые пять лет кислородный баллон подвергают обязательному испытанию, что отмечается клеймом, насекаемым на верхней’ сферической части баллона. Производится также гидравлическое испытание на полуторное рабочее давление, т. е. на 225 ат
При нарушении правил обращения с баллоном, заполненным кислородом под давлением 150 ат, может произойти взрыв значительной разрушительной силы. Поэтому при обращении с кислородными баллонами необходимо строго соблюдать Установленные правила безопасности.
Обычно в цехе не должно находиться одновременно более десяти баллонов. В цехе баллоны должны прикрепляться хомутом или цепью к стене, колонне стойке и т. п. для устранения возможности падения. На территории завода баллоны нужно переносить на носилках или, лучше, перевозить на специальных тележках; переносить баллоны на руках запрещается.
Баллоны необходимо защищать от нагревания, например от печей, вызывающего опасное повышение давления газа в баллонах. При работах летом на открытом воздухе в солнечную погоду следует прикрывать кислородные баллоны мокрым брезентом. Нельзя допускать загрязнения баллона, в особенности его вентиля, маслами и жирами, которые самовозгораются в кислороде, что может привести к взрыву баллона.
Баллоны с кислородом должны храниться в специально отведенных отдельных складах. Транспортирование газообразного кислорода в баллонах обходится дорого. Нормальный баллон емкостью 40 л, весящий около 60 кг, вмещает 6000 л = 6 м3 кислорода, весящего всего 6 −1,3 = 7,8 кг, так что на вес полезного груза 7,8 кг приходится перевозить тару 60 кг, т. е. вес тары составляет 88 %, а полезного груза 12%.
Обращение с кислородом требует строгого соблюдения правил техники безопасности. Масла и жиры самовоспламеняются при взаимодействии с газообразным кислородом, который дает также взрывчатые смеси с горючими газами и парами. Пористые органические материалы — торф, дерево, ткани и пр., смоченные жидким кислородом образуют сильные взрывчатые вещества — оксиликвиты, специально применяемые для взрывных работ.
Вентиль кислородного баллона изготовляют из латуни. Присоединительный штуцер вентиля имеет правую трубную резьбу 3/4″. При хранении вентиль защищается предохранительным колпаком, который навертывают на наружное кольцо горловины.
Значение кислорода для газовой сварки
К газовой сварке относятся способы, при которых нагрев металла производится высокотемпературным газовым пламенем посредством специальных сварочных горелок. Для сварки многих металлов практически пригодно пламя с температурой не ниже 3000° С. В настоящее время для получения газосварочного пламени практически исключительно сжигают различные горючие в технически чистом кислороде.
Сжигание различных горючих в воздухе дает пламя со слишком низкой температурой (не выше 1800-2000° С), пригодное для сварки лишь самых легкоплавких металлов, например свинца. Низкая температура газовоздушного пламени и малая пригодность его для газовой сварки металлов объясняется большим содержанием в воздухе инертных газов, главным образом азота, не участвующих в процессе- горения и резко снижающих пирометрический эффект и температуру пламени.
При сжигании одного и того же горючего в воздухе и кислороде общий тепловой или калориметрический эффект реакции горения в обоих случаях практически одинаков, но температура пламени резко различна. Для обычных случаев сварки в промышленности применяется лишь пламя, получаемое сжиганием горючего в технически чистом кислороде. Газовоздушное пламя может иметь в сварочной технике очень ограниченное применение.
Технически чистый кислород является важнейшим газом в сварочной технике, для процессов газовой сварки и кислородной резки. Необходим он также и для других процессов, например в химической, металлургической и других отраслях промышленности и т. п. Для многих из этих производств не требуется высокая чистота применяемого кислорода и достаточен дешевый газ, с содержанием в нем кислорода только 50-90%. В сварочной технике применяется кислород высокой степени чистоты, во всяком случае не ниже 98,5%,
Способы производства технически чистого кислорода могут быть различны; промышленное значение имеют два способа получения: а) из воздуха — методом глубокого охлаждения; б) из воды — путем электролиза. В нашей промышленности применяется почти исключительно способ производства кислорода из воздуха, как более экономичный, при котором расходуется 0,5 — 1,6 кВт/ч электроэнергии на 1 м3 кислорода;
на получение 1 м3 кислорода путем электролиза воды с одновременным получением 2 м3 водорода требуется 10-12 кВт/ч. Получение кислорода способом электролиза воды может быть рентабельно лишь при одновременном использовании получаемого водорода. Производство кислорода из воздуха Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислорода 20,93 % и азота 78,03 %, остальное — аргон и другие инертные газы, углекислый газ и пр.
Содержание водяных паров в воздухе может меняться в широких пределах в зависимости от температуры и степени насыщения. Для получения технически чистого кислорода воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении −194,5° С.)
Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. Возможность успешной ректификации основывается на довольно значительной разности (около 13°) температур кипения жидких азота (-196° С) и кислорода (-183° С).
Воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, затем проходит последовательно ступени компрессора. За каждой ступенью компрессора давление воздуха возрастает и доводится до 50-220 ат, в зависимости от системы установки и стадии производства.
После каждой ступени компрессора воздух проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и: водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат — декарбонизатор, заполняемый водным раствором едкого натра.
Сжатый воздух из компрессора проходит осушительную батарею из баллонов, заполненных кусковым едким натром, поглощающим влагу и остатки углекислоты. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубки кислородного аппарата и приходится останавливать установку для оттаивания и продувки.
Пройдя осушительную батарею, сжатый воздух поступает в так называемый кислородный аппарат, где происходит охлаждение и сжижение воздуха и его ректификация с разделением на кислород и азот. Газообразный азот чистотой 96-98% обычно не используется и из теплообменника выпускается в атмосферу.
Кислород направляется в газгольдер и подается для наполнения кислородных баллонов под давлением до 165 ат; 1 м3 кислорода при 760 мм рт. ст. и 0° С весит 1,43 кг, и при 20° С 1,31 кг; 1 л жидкого кислорода весит 1,13 кг и, испаряясь, образует 0,79 м3 газообразного кислорода при 0° С и 760 мм рт.ст.;
1 кг жидкого кислорода занимает объем 0,885 л и, испаряясь, образует 0,70 м3 газообразного кислорода при 0° С и 760 мм рт,.ст. По ГОСТу 5583-58 технический кислород для газопламенной обработки металлов выпускается трех сортов; высший сорт, с чистотой не ниже 99,5%;
1-й сорт, не ниже 99,2% и 2-й сорт, не ниже 98,5 % кислорода по объему. Значительный экономический интерес представляет доставка кислорода с кислородного завода потребителям в жидком виде, при котором вес тары составляет около 50% общего веса груза; при том же весе перевозимого груза доставляется жидкого кислорода в 5 раз больше, чем при перевозке его в газообразном виде.
Для возможности использования жидкого кислорода необходимы: 1) транспортный танк для перевозки жидкого кислорода, установленный на автомашине, обычно принадлежащий кислородному заводу; 2) газификатор, служащий для превращения жидкого кислорода в газообразный и устанавливаемый обычно у потребителя кислорода.
Транспортный танк для перевозки жидкого кислорода в основном представляет собой шар из листовой латуни, заключенный в стальной кожух; пространство между шаром и кожухом заполнено теплоизоляционным материалом — порошкообразной углекислой магнезией. Жидкий кислород заливают в танк через приемно-спускной вентиль, заполняя латунный шар.
Отбор кислорода из него производится через гибкий шланг, присоединенный к вентилю. Так как окружающая температура воздуха всегда выше критической температуры кислорода, то жидкий кислород неизбежно испаряется в окружающую атмосферу. При хорошем состоянии теплоизоляции танка эта потеря может составлять до 0,5% в час.
На случай повышения давления танк снабжен предохранительным клапаном. Потребители жидкого кислорода должны иметь газификаторы. Кислородные газификаторы разделяются на стационарные и переносные, а также: а) низкого давления, или холодные, подающие кислород в распределительную трубопроводную сеть при давлении до 15 am, и б) высокого давления, или теплые, дающие кислород для наполнения баллонов под давлением 150-165 am.
Наиболее распространен на наших заводах стандартный стационарный холодный газификатор емкостью 1000 л жидкого или 800 м3 газообразного кислорода. Газификатор устанавливают в отдельном помещении. Он состоит из толстостенного стального шара, внутри которого помещен тонкостенный латунный шар для жидкого кислорода.
Шар газификатора находится в кожухе; пространство между кожухом и шаром заполняют магнезией, как в кислородных танках. Наполняется газификатор жидким кислородом из транспортного танка через вентиль и гибкий шланг. Из газификатора жидкий кислород поступает в змеевик испарителя, и оттуда газообразный кислород направляется в сеть кислородных трубопроводов. Для выравнивания колебаний давления приключают ресивер (реципиент) емкостью около 10 м3.
Дополнительная информация:
Упругость водяного пара и относительная влажность
Содержание водяного пара в воздухе называют влажностью воздуха. Основные характеристики влажности — это упругость водяного пара и относительная влажность. Абсолютная влажность воздуха — количество водяного пара в единице объема (г/м3).
Водяной пар, как всякий газ, обладает упругостью (давлением). Упругость водяного пара е пропорциональна его плотности (содержанию в единице объема) и его абсолютной температуре. Она выражается в тех же единицах, что и давление воздуха, т. е. либо в миллиметрах ртутного столба, либо в миллибарах.
Упругость водяного пара в состоянии насыщения называют упругостью насыщения. Это максимальная упругость водяного пара, возможная при данной температуре. Например, при температуре 0° упругость насыщения равна 6,1 мб. На каждые 10° температуры упругость насыщения увеличивается примерно вдвое.
Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность. Так называют отношение фактической упругости е водяного пара, находящегося в воздухе, к упругости насыщения Е при той же температуре, выраженное в процентах, т. е. r = e/E * 100%
Например, при температуре 20° упругость насыщения равна 23,4 мб. Если при этом фактическая упругость пара в воздухе будет 11,7 мб, то относительная влажность воздуха равна (11,7/23,4)*100 = 50%.
Упругость водяного пара у земной поверхности меняется от сотых долей миллибара (при очень низких температурах зимой в Антарктиде и в Якутии)
Относительная влажность воздуха может принимать все значения от нуля для вполне сухого воздуха (е = 0) до 100% для состояния насыщения (е=Е).