- Аллотропия. физические свойства.
- Диспропорционирование серы в растворах щелочей
- Оксид серы (vi), триоксид серы, серный ангидрид (so3)
- Оксид серы (iv), диоксид серы, сернистый газ, сернистый ангидрид (so2)
- Получение серы
- Реакции с менее эо неметаллами
- Реакции с металлами
- Реакции со сложными веществами — сильными окислителями
- Реакции, взаимодействие серы с водородсодержащими соединениями. уравнения реакции:
- Реакции, взаимодействие серы с кислотами. уравнения реакции:
- Реакции, взаимодействие серы с металлами и полуметаллами. уравнения реакции:
- Реакции, взаимодействие серы с неметаллами. уравнения реакции:
- Реакции, взаимодействие серы с оксидами. уравнения реакции:
- Реакции, взаимодействие серы с солями. уравнения реакции:
- Реакции, взаимодействие серы. уравнения реакции серы с веществами.
- Реакции, связанные с изменением молекулярного состава серы:
- Сера — восстановитель:
- Сера — окислитель:
- Сера — урок. химия, 9 класс.
- Сера, химические свойства, получение
- Серная кислота (h2so4)
- Сернистая кислота (h2so3)
- Сероводород
- Соли сернистой кислоты, сульфиты и гидросульфиты
- Соли серной кислоты, сульфаты, гидросульфаты
- Сульфиды
- Характеристика элемента
- Химические свойства серы
- Выводы
Аллотропия. физические свойства.
Аллотропные модификации серы: ромбическая — S8. Твердое кристаллическое вещество ли монно-желтого цвета; нерастворимо в воде, хорошо растворимо в сероуглероде, ацетоне, бензоле.
Моноклинная — S8. Существует при температуре около 950С. Отличается от ромбической взаимной ориентацией октаэдров в кристаллической решетке.
Пластическая. Длинные зигзагообразные цепи.
Диспропорционирование серы в растворах щелочей
3S 6NaOH = 2Na2S Na2SO3 3Н2O
Оксид серы (vi), триоксид серы, серный ангидрид (so3)
Способы получения серного ангидрида
- SO3 можно получить из SO2 путем каталитического окисления последнего кислородом:
2SO2 O2 ↔ 2SO3
- ОкислениемSO2 другими окислителями:
SO2 O3 → SO3 O2
SO2 NO2 → SO3 NO
- Разложением сульфата железа (III):
Fe2(SO4)3 → Fe2O3 3SO3
Физические
свойства серного ангидрида
При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким
запахом. На воздухе SO3 «дымит» и сильно
поглощает влагу.
SO3 – тяжелее
воздуха, хорошо растворим в воде.
SO3 ядовит!
Химические свойства серного
ангидрида
Оксид серы (VI) – это кислотный оксид.
- Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:
SO3 H2O → H2SO4
- Как кислотный оксид, SO3 взаимодействует с щелочами и
основными оксидами, образуются средние или кислые соли:
SO3 2NaOH(избыток) → Na2SO4 H2O
SO3 NaOH(избыток) → NaHSO4
SO3 MgO → MgSO4 (при сплавлении):
SO3 ZnO = ZnSO4
- SO3 проявляет сильные окислительные свойства, так
как сера в находится в максимальной степени окисления ( 6).
Вступает в реакции с восстановителями:
SO3 2KI → I2 K2SO3
3SO3 H2S → 4SO2 H2O
5SO3 2P → P2O5 5SO2
- При растворении в концентрированной
серной кислоте образует олеум (раствор
SO3 в H2SO4).
Оксид серы
(iv), диоксид серы, сернистый газ, сернистый ангидрид (so2)
Способы получения сернистого газа
- Окисление серы, сероводорода и сульфидов кислородом воздуха:
S O2 → SO2
2H2S 3O2 → 2SO2 2H2O
2CuS 3O2 → 2SO2 2CuO
- Действие высокой температуры на сульфиты (термическое разложение):
CaSO3 = СаО SO2↑
- Действие сильных кислот на сульфиты:
Na2SO3 2HCl = SO2 Н2O 2NaCI
- Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:
2H2SO4 Сu = SO2↑ CuSO4 2Н2O
Физические
свойства сернистого газа
При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.
Химические свойства сернистого газа
SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления ( 4) SO2 может проявлять свойства как окислителя так и восстановителя.
- При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.
SO2 H2O ↔ H2SO3
- Как
кислотный оксид, SO2 вступает
в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:
SO2 СаО = CaSO3
SO2 Na2O → Na2SO3
SO2 NaOH = NaHSO3
SO2 2NaOH = Н2O Na2SO3
- При взаимодействии с окислителями SO2 проявляет восстановительные свойства. При этом степень окисления серы повышается:
2SO2 O2 ↔ 2SO3
SO2 Br2 2H2O → H2SO4 2HBr
SO2 2HNO3 → H2SO4 2NO2
SO2 O3 → SO3 O2
SO2 PbO2 → PbSO4
5SO2 2H2O 2KMnO4 → 2H2SO4 2MnSO4 K2SO4
Обесцвечивание раствора перманганата калия KMnO4 является качественной реакцией для обнаружения сернистого газа и сульфит-иона
SO2 2Н2S → 3S↓ 2H2O
SO2 2CO → S↓ 2СО2
SO2 С → S↓ СO2
Получение серы
1. Извлечение самородной серы из ее месторождений
2. Переработка природных газов, содержащих H2S (окисление при недостатке О2).
3. В лаборатории серу получают взаимодействием SО2 и H2S в водном растворе:
SО2 2H2S = 3S↓ 2H2О
Реакции с менее эо неметаллами
S Н2 = H2S сероводород
2S С = CS2 сероуглерод
3S 2Р = P2S3 сульфид фосфора (III)
Реакции с металлами
1) Сера непосредственно соединяется с большинством Me (кроме Pt, Au), образуя сульфиды. С некоторыми Me реакция протекает при обычной температуре, например:
S Сu = CuS
S 2Ag = Ag2S
S Hg = HgS
С железом и многими другими Me сера реагирует при нагревании:
S Fe = FeS
Реакции со сложными веществами — сильными окислителями
Сильные окислители (HNO3, H2SO4 конц., К2Сr2O7 и др.) окисляют свободную серу до SO2 или H2SO4:
S 2HNO3(разб.) = H2SO4 2NO↑
S 6HNO3(конц.) = H2SO4 6NO2↑ 2Н2O
S 2H2SO4(конц.) = 3SO2↑ 2Н2O
S К2Сr2O7 = Сr2O3 K2SO4
Реакции, взаимодействие серы с водородсодержащими соединениями. уравнения реакции:
1. Реакция взаимодействия серы и гидрида рубидия:
2RbH S → Rb2S H2S (t = 300-350 °C).
Реакция взаимодействия гидрида рубидия и серы происходит с образованием сульфида рубидия и сероводорода.
2. Реакция взаимодействия серы и йодоводорода:
2HI S → I2 H2S (t ≈ 500 °C).
Реакция взаимодействия йодоводорода и серы происходит с образованием йода и сероводорода.
3. Реакция взаимодействия серы и селеноводорода:
H2Se S → Se H2S.
Реакция взаимодействия селеноводорода и серы происходит с образованием селена и сероводорода. В ходе реакции используется насыщенный раствор селеноводорода. Реакция медленно протекает при комнатной температуре.
4. Реакция взаимодействия серы и гидрида натрия:
2NaH 2S → Na2S H2S (t = 350-400 °C).
Реакция взаимодействия гидрида натрия и серы происходит с образованием сульфида натрия и сероводорода.
5. Реакция взаимодействия серы и гидрида лития:
2LiH 2S → Li2S H2S (t = 300-350 °C).
Реакция взаимодействия гидрида лития и серы происходит с образованием сульфида лития и сероводорода.
6. Реакция взаимодействия серы и гидрида калия:
2KH 2S → K2S H2S (t = 350 °C).
Реакция взаимодействия гидрида калия и серы происходит с образованием сульфида калия и сероводорода.
Реакции, взаимодействие серы с кислотами. уравнения реакции:
С концентрированными кислотами-окислителями сера реагирует только при длительном нагревании.
Реакции, взаимодействие серы с металлами и полуметаллами. уравнения реакции:
1. Реакция взаимодействия серы и кальция:
Ca S → CaS (t = 150 °C).
Реакция взаимодействия кальция и серы происходит с образованием сульфида кальция.
2. Реакция взаимодействия серы и кобальта:
Co S → CoS (t ≈ 650 °C).
Реакция взаимодействия кобальта и серы происходит с образованием сульфида кобальта. В результате реакции также образуются CoS2, Co3S4, Co9S8.
3. Реакция взаимодействия серы и калия:
2K S → K2S (t = 100-200 °C).
Реакция взаимодействия калия и серы происходит с образованием сульфида калия.
4. Реакция взаимодействия серы и лития:
2Li S → Li2S (t > 130 °C).
Реакция взаимодействия лития и серы происходит с образованием сульфида лития.
5. Реакция взаимодействия серы и натрия:
2Na S → Na2S (t > 130 °C).
Реакция взаимодействия натрия и серы происходит с образованием сульфида натрия.
6. Реакция взаимодействия серы и рубидия:
2Rb S → Rb2S (t = 100-130 °C).
Реакция взаимодействия рубидия и серы происходит с образованием сульфида рубидия.
7. Реакция взаимодействия серы и серебра:
2Ag S → Ag2S (t > 200°C).
Реакция взаимодействия серебра и серы происходит с образованием сульфида серебра.
8. Реакция взаимодействия серы и меди:
2Cu S → Cu2S (t = 300-400 °C).
Реакция взаимодействия меди и серы происходит с образованием сульфида меди.
9. Реакция взаимодействия серы и железа:
Fe S → FeS (t = 600-950°C).
Реакция взаимодействия железа и серы происходит с образованием сульфида железа.
10. Реакция взаимодействия серы и цинка:
Zn S → ZnS (t = 130 °C).
Реакция взаимодействия цинка и серы происходит с образованием сульфида цинка.
11. Реакция взаимодействия серы и таллия:
2Tl S → Tl2S (t = 320 °C).
Реакция взаимодействия таллия и серы происходит с образованием сульфида таллия. Реакция протекает в атмосфере водорода.
Реакции, взаимодействие серы с неметаллами. уравнения реакции:
1. Реакция взаимодействия серы и водорода:
H2 S → H2S (t = 150-200 °C).
Реакция взаимодействия водорода и серы происходит с образованием сероводорода.
2. Реакция взаимодействия серы и кислорода:
S O2 → SO2 (t°).
Реакция взаимодействия серы и кислорода происходит с образованием оксида серы (IV). Образуется также примесь оксид серы (VI) SO3. Данная реакция представляет собой сгорание серы на воздухе.
3. Реакция взаимодействия серы и фтора:
S 3F2 → SF6.
Реакция взаимодействия серы и фтора происходит с образованием фторида серы (VI). Реакция протекает при комнатной температуре.
4. Реакция взаимодействия серы и красного фосфора:
4P 9S → P4S9 (t = 550 °C, р).
Реакция взаимодействия красного фосфора и серы происходит с образованием нонасульфида тетрафосфора. Реакция протекает при избыточном давлении. Образуется также примесь P4S7.
Реакции, взаимодействие серы с оксидами. уравнения реакции:
1. Реакция взаимодействия серы и оксида углерода (II):
CO S → COS (t ≈ 350 °C).
Реакция взаимодействия оксида углерода (II) и серы происходит с образованием оксосульфида углерода. Катализатором может выступать углерод.
Реакции, взаимодействие серы с солями. уравнения реакции:
1. Реакция взаимодействия серы и сульфита натрия:
Na2SO3 S → Na2S2O3 (t°)
или
8Na2SO3 S8 → 8Na2S2O3 (t°).
Реакция взаимодействия сульфита натрия и серы происходит с образованием тиосульфата натрия. Реакция происходит в кипящем водном растворе.
2. Реакция взаимодействия серы и сульфида калия:
K2S S → K2S2 (t°).
Реакция взаимодействия сульфида калия и серы происходит с образованием дисульфида калия.
3. Реакция взаимодействия серы и трисульфида гадолиния:
Gd2S3 S → 2GdS2.
Реакция взаимодействия трисульфида гадолиния с серой происходит с образованием сульфида гадолиния.
4. Реакция взаимодействия серы и сульфида таллия (I):
Tl2S 2S → Tl2S3.
Реакция взаимодействия сульфида таллия (I) и серы происходит с образованием трисульфида таллия (I).
5. Реакция взаимодействия серы и сульфида бора (III):
B2S3 2S → B2S5.
Реакция взаимодействия сульфида бора (III) с серой происходит c образованием сульфида бора (V).
6. Реакция взаимодействия серы и трисульфида диванадия:
V2S3 2S → V2S5.
Реакция взаимодействия трисульфида диванадия с парами серы происходит с образованием сульфида ванадия.
Реакции, взаимодействие серы. уравнения реакции серы с веществами.
Сера реагирует, взаимодействует с неметаллами, металлами, полуметаллами, оксидами, кислотами, солями и пр. веществами.
Реакции, взаимодействие серы с неметаллами
Реакции, взаимодействие серы с металлами и полуметаллами
Реакции, взаимодействие серы с оксидами
Реакции, взаимодействие серы с солями
Реакции, взаимодействие серы с кислотами
Реакции, взаимодействие серы с водородсодержащими соединениями
Реакции, связанные с изменением молекулярного состава серы
Реакции, связанные с изменением молекулярного состава серы:
1. Реакция изменения молекулярного состава серы:
S8 → S6 → S4 (t°).
S4 → S2 (t = 800-1400 °C).
S2 → S (t = 1700 °C).
Реакция происходит при нагревании.
Сера — восстановитель:
S — 4e- = S 4; S — 6e- = S 6
В соединениях с более ЭО элементами атомы серы находятся в положительно заряженном состоянии.
Сера — окислитель:
S 2e- = S2-
Для завершения октета на внешнем слое атомы серы принимают недостающие 2 электрона и в состоянии S2- образуют ионные и ковалентные связи с водородом, металлами и некоторыми неметаллами.
Сера — урок. химия, 9 класс.
- Используется в химической промышленности для производства серной кислоты;
- находит применение в сельском хозяйстве для обеззараживания помещений;
- входит в состав некоторых мазей;
- используется в производстве спичек и бумаги;
- с её помощью каучук превращают в резину;
- входит в состав взрывчатых веществ.
Сера, химические свойства, получение
1
H
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Серная кислота (h2so4)
Способы
получения серной кислоты
В промышленности серную кислоту производят из серы, сульфидов
металлов, сероводорода и др.
Наиболее часто серную кислоту получают из пирита FeS2.
Основные стадии получения серной кислоты включают:
1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:
4FeS2
11O2 → 2Fe2O3
8SO2 Q
2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.
3. Осушка сернистого газа в сушильной башне
4.Нагрев очищенного газа в теплообменнике.
5. Окисление сернистого газа в серный ангидрид в контактном аппарате:
2SO2 O2 ↔ 2SO3 Q
6.Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.
Физические
свойства, строение серной кислоты
При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл
При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот!
Валентность серы в серной кислоте равна VI.
Качественные
реакции для обнаружения серной кислоты и сульфат ионов
Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:
BaCl2 Na2SO4 → BaSO4↓ 2NaCl
ВидеоВзаимодействие хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион).
Химические свойства серной кислоты
Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.
- Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:
H2SO4 ⇄ H HSO4–
HSO4– ⇄ H SO42–
Характерны все свойства кислот:
- Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:
H2SO4 MgO → MgSO4 H2O
H2SO4 КОН → KHSО4 H2O
H2SO4 2КОН → К2SО4 2H2O
3H2SO4 2Al(OH)3 → Al2(SO4)3 6H2O
H2SO4 NH3 → NH4HSO4
- Вытесняетболее слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):
Н2SO4 2NaHCO3 → Na2SO4 CO2 H2O
H2SO4 Na2SiO3 → Na2SO4 H2SiO3
- Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.
NaNO3(тв.) H2SO4 → NaHSO4 HNO3
NaCl(тв.) H2SO4 → NaHSO4 HCl
- Вступает в обменные реакции ссолями:
H2SO4 BaCl2 → BaSO4 2HCl
- Взаимодействует с металлами:
Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:
H2SO4(разб.) Fe → FeSO4 H2
H2SO4 Zn = ZnSO4 H2
Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:
- Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:
H2SO4 Na = Na2SO4 Н2S↑ H2O
5H2SO4(конц.) 4Zn → 4ZnSO4 H2S↑ 4H2O
- Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:
4H2SO4 3Mg → 3MgSO4 S 4H2O
- Такие металлы, как железо Fe,
алюминий Al, хром Cr пассивируются концентрированной
серной кислотой на холоде. При нагревании,
при удалении оксидной пленки реакция возможна.
6H2SO4(конц.) 2Fe → Fe2(SO4)3 3SO2 6H2O
6H2SO4(конц.) 2Al → Al2 (SO4)3 Н2S↑ 6H2O
- Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:
2H2SO4(конц.) Cu → CuSO4 SO2 ↑ 2H2O
2H2SO4(конц.) Hg → HgSO4 SO2 ↑ 2H2O
2H2SO4(конц.) 2Ag → Ag2SO4 SO2↑ 2H2O
- В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:
5H2SO4(конц.) 2P → 2H3PO4 5SO2↑ 2H2O
2H2SO4(конц.) С → СО2↑ 2SO2↑ 2H2O
2H2SO4(конц.) S → 3SO2 ↑ 2H2O
3H2SO4(конц.) 2KBr → Br2↓ SO2↑ 2KHSO4 2H2O
5H2SO4(конц.) 8KI → 4I2↓ H2S↑ K2SO4 4H2O
H2SO4(конц.) 3H2S → 4S↓ 4H2O (комнатная температура)
H2SO4(конц.) H2S = S↓ SО2↑ 2Н2О (при нагревании)
H2SO4(конц.) 2HBr = Br2 SO2 2H2O
Сернистая кислота (h2so3)
Способы
получения сернистой кислоты
При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:
SO2 H2O ↔ H2SO3
Физические
свойства сернистой кислоты
Сернистая кислота H2SO3 –двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.
Валентность серы
в сернистой кислоте равна IV, а степень окисления 4.
Химические свойствасернистой кислоты
Общие свойства
кислот
- Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
- кислые – гидросульфиты
H2SO3 ↔ HSO3— H
HSO3—↔ SO32- H
- Сернистая кислота самопроизвольно распадается на SO2 и H2O:
H2SO3 ↔ SO2 H2O
Сероводород
Получение
сероводорода
- Получение из простых веществ:
S Н2 = H2S
- Взаимодействие минеральных кислот и сульфидов металлов, расположенных в ряду напряжений левее железа:
FeS 2HCI = H2S↑ FeCl2
5H2SO4(конц.) 8Na = H2S↑ 4Na2SO4 4H2О
AI2S3 6Н2О = 3H2S↑ 2Аl(ОН)3↓
C40H82 41S = 41Н2S 40С
ВидеоПолучение и обнаружение сероводорода
Физические
свойства и строение сероводорода
Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S — бесцветный ядовитый газ, с неприятным удушливым
запахом тухлых яиц. При концентрации > 3 г/м3 вызывает смертельное отравление.
Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.
В твердом состоянии имеет молекулярную кристаллическую решетку.
Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1о.
Качественная реакция для обнаружения сероводорода
Для
обнаружения анионов S2- и сероводорода используют
реакцию газообразного H2S с Pb(NO3)2:
H2S Pb(NO3)2 = 2HNO3 PbS↓ черный
осадок.
Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.
Химические свойства серы
H2S является сильным восстановителем
При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4
- Окисление кислородом воздуха:
2H2S 3О2(избыток) = 2SО2↑ 2Н2О
2H2S О2(недостаток) = 2S↓ 2Н2О
H2S Br2 = S↓ 2НВr
H2S Cl2 → 2HCl S↓
H2S 4Cl2 4H2O → H2SO4 8HCl
- Взаимодействие с кислотами-окислителями:
3H2S 8HNО3(разб.) = 3H2SO4 8NO 4Н2О
H2S 8HNО3(конц.) = H2SO4 8NО2↑ 4Н2О
H2S H2SO4(конц.) = S↓ SО2↑ 2Н2О
- Взаимодействие со сложными окислителями:
5H2S 2KMnO4 3H2SO4 = 5S↓ 2MnSO4 K2SO4 8Н2О
5H2S 6KMnO4 9H2SO4 = 5SО2 6MnSO4 3K2SO4 14Н2О
H2S 2FeCl3 = S↓ 2FeCl2 2HCl
2H2S SO2 = 2H2O 3S
3H2S K2Cr2O7 4H2SO4 → 3S Cr2(SO4)3 K2SO4 7H2O
- Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:
1-я ступень:
H2S → Н HS—
2-я ступень:
HS— → Н S2-
H2S очень слабая
кислота, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:
H2S Mg = Н2↑ MgS
- с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:
2H2S 4Аg O2 = 2Ag2S↓ 2Н2O
H2S ВаО = BaS Н2O
H2S NaOH(недостаток) = NaHS Н2O
H2S 2NaOH(избыток) → Na2S 2H2O
H2S 2NH3(избыток) = (NH4)2S
- с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:
CuSO4 H2S = CuS↓ H2SO4
H2S Pb(NO3)2 → PbS↓ 2HNO3
Реакция
с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
ВидеоВзаимодействие сероводорода с нитратом свинца
Соли сернистой кислоты, сульфиты и гидросульфиты
Способы
получения сульфитов
Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:
SO2 СаО = CaSO3
SO2 Na2O → Na2SO3
SO2 NaOH = NaHSO3
SO2 2NaOH = Н2O Na2SO3
Физические
свойства сульфитов
Сульфиты
щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы
или не существуют.
Гидросульфиты
металлов хорошо растворимы в Н2O, а некоторые из
них, такие как Ca(HSO3)2 существуют
только в растворе.
Химические свойства сульфитов
Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.
SO3— Н2O = HSO3— ОН—
Na2SO3 Н2O = NaHSO3 NaOH
Реакции, протекающие без изменения степени окисления:
- Реакция с сильными кислотами:
Na2SO3 2HCl = 2NaCl
SO2↑ Н2O
NaHSO3 HCl = NaCl SO2↑ Н2O
- Термическое разложение сульфитов:
CaSO3 = СаО SO2↑
- Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:
CaSO3 SO2 Н2O = Ca(HSO3)2
- Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:
Na2SO3 ZnCl2 = ZnSO3↓ 2NaCl
Окислительно-восстановительные реакции
Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления 4
- Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:
Na2SO3 Вr2 Н2O = Na2SO4 2НВr
5K2SO3 2КМnO4 3H2SO4 = 6K2SO4 2MnSO4 3Н2O
Na2SO3 HNO3 = 2NaNO3 SO2 H2O
- Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:
2Na2SO3 O2 = 2Na2SO4
- При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:
Na2SO3 ЗС = Na2S ЗСО
- При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:
4K2SO3 = 3K2SO4 K2S
Соли серной кислоты, сульфаты, гидросульфаты
Способы
получения солей серной кислоты
Сульфаты можно получить при взаимодействии серной кислоты с металлами,
оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при
взаимодействии с другими солями, если продуктом реакции является нерастворимое
соединение.
Физические
свойства солей серной кислоты
Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы
в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных
щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких
щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.
Средние сульфаты щелочных металлов термически устойчивы. Кислые
сульфаты щелочных металлов при нагревании разлагаются.
Многие средние сульфаты образуют устойчивые кристаллогидраты:
Na2SO4 ∙ 10H2O − глауберова
соль
CaSO4 ∙ 2H2O − гипс
2CaSO4 xH2O –
алебастр
CuSO4 ∙ 5H2O − медный купорос
FeSO4 ∙ 7H2O − железный купорос
ZnSO4 ∙ 7H2O − цинковый купорос
Na2CO3 ∙ 10H2O −
кристаллическая сода
KАl(SO4)2 x 12H2O
– алюмокалиевые квасцы.
Химические свойства солей серной кислоты
Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.
- Сульфаты щелочных металлов плавятся без разложения.
- Кислые сульфаты щелочных металлов разлагаются с отщеплением воды:
2KHSO4 → K2S2O7 H2O↑.
- Сульфаты металлов средней активности разлагаются на соответствующие оксиды:
ZnSO4 = ZnO SO3
FeSO4 = 2Fe2O3 4SO2 O2
2CuSO4 → 2CuO SO2 O2 (SO3)
2Al2(SO4)3 → 2Al2O3 6SO2 3O2
2Cr2(SO4)3 → 2Cr2O3 6SO2 3O2
- Сульфаты тяжёлых или малоактивных металлов разлагаются с образованием металла и кислорода:
HgSO4 = Hg SO2 O2
- Некоторые сульфаты проявляют окислительные свойства и вступают в реакции с простыми веществами:
CaSO4
C = CaO SO2 CO
BaSO4
4C = BaS 4CO
Сульфиды
Получение сульфидов
- Непосредственно из простых веществ:
S Fe → FeS
S Mg → MgS
S Ca → CaS
- Взаимодействие H2S с растворами щелочей:
H2S 2NaOH = 2H2O Na2S
H2S NaOH = H2O NaHS
- Взаимодействие H2S или (NH4)2S с растворами солей:
H2S CuSO4 = CuS↓ H2SO4
H2S 2AgNO3 = Ag2S↓ 2HNO3
Pb(NO3)2 Н2S → PbS↓ 2НNO3
ZnSO4 Na2S → ZnS↓ Na2SO4
- Восстановление сульфатов при прокаливании с углем:
Na2SO4 4С = Na2S 4СО
Физические свойства сульфидов
Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).
По растворимости
в воде и кислотах сульфиды классифицируют
на:
- нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
- нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
- гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))
По цвету сульфиды можно разделить на:
- Чёрные – HgS, Ag2S, PbS, CuS, FeS,
NiS; - Коричневые – SnS, Bi2S3;
- Оранжевые – Sb2S3, Sb2S5;
- Жёлтые – As2S3, As2S5,
SnS2, CdS; - Розовые — MnS
- Белые – ZnS, Al2S3, BaS,
CaS;
Химические свойства сульфидов
Обратимый гидролиз сульфидов
K2S H2O ⇄ KHS KOH
S2- H2O → HS— ОН—
- Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:
2CaS 2НОН
= Ca(HS)2 Са(ОН)2
При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:
HS— H2O → H2S↑ ОН—
Необратимый
гидролиз сульфидов
- Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:
Al2S3 6H2O = 3H2S↑ 2AI(OH)3↓
Нерастворимые
сульфиды гидролизу не подвергаются
NiS HСl ≠
- Некоторые из сульфидов растворяются в сильных кислотах:
FeS 2HCI =
FeCl2 H2S↑
ZnS 2HCI =
ZnCl2 H2S↑
CuS 8HNO3 → CuSO4 8NO2 4H2O
CuS 4H2SO4(конц. гор.) → CuSO4 4SO2 4H2O
MnS 3HNO3 = MnSO4 8NO2 4H2O
- Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
- Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:
PbS 4H2O2 → PbSO4 4H2O
СuS Cl2 → CuCl2 S
- Окислительный обжиг сульфидов является
важной стадией переработки сульфидного сырья в различных производствах
2ZnS 3O2 = 2ZnO 2SO2
4FeS2 11O2 = 2Fe2O3 8SO2↑
2CuS 3O2 → 2CuO 2SO2
2Cr2S3 9O2 → 2Cr2O3 6SO2
Взаимодействия
сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S2−:
Na2S Pb(NO3)2 → PbS↓ 2NaNO3
Na2S 2AgNO3 → Ag2S↓ 2NaNO3
Na2S Cu(NO3)2 → CuS↓ 2NaNO3
Характеристика элемента
16S1s22s22p63s23p4
Аr = 32,066
ЭО — 2,5
Изотопы: 32S (95,084 %); 34S (4,16 %); 33S и 36S (< 1 %)
Кларк в земной коре 0,05 % по массе. Формы нахождения:
1) самородная сера (свободная S);
2) S2- (H2S и сульфиды металлов);
3) S 6 (сульфаты Ва и Са);
4) в составе белков, витаминов.
Сера — типичный неметалл, р-элемент. Устойчивые С.О. в соединениях -2, 4, 6.
Отличительное свойство — способность образовывать прочные гомоатомные связи-S-S-S- что приводит к существованию линейных и циклических цепей.
Химические свойства серы
При обычной температуре твердофазная сера малореакционноспособна. Однако при нагревании, и особенно в расплавленном состоянии, сера ведет себя как очень химически активное вещество
Выводы
Изложенное выше можно отразить в шутливом стишке: «Сера, сера, буква S, 32 атомный вес, сера в воздухе горит, образует ангидрид (какой кислоты?), ангидрид плюс вода — получилась кислота (какая?)».