- Валентные возможности атома азота
- Изотопы
- Исторические сведения
- Какая степень окисления у свинца?
- Нахождение в природе
- Применение
- Таблица степеней окисления химических элементов (1 часть):
- Таблица степеней окисления химических элементов (2 часть):
- Таблица степеней окисления химических элементов (3 часть):
- Таблица степени окисления химических элементов
- Химические свойства элементов: свинец
Валентные возможности атома азота
Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:
Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.
Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но также и тогда, когда один атом, имеющий неподеленную пару электронов — донор(
Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.
Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии.
Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:
Пунктирной линией на иллюстрации изображена так называемая делокализованнаяπ-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.
em>Резюмируя информацию по валентным возможностям атома азота:
1) Для азота возможны валентности I, II, III и IV
2) Валентности V у азота не бывает!
3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления 5 (!).
4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4 , азотная кислота и д.р).
Изотопы
Основная статья: Изотопы свинца
Весь свинец в основном является смесью изотопов 204Pb, 206Pb, 207Pb, 208Pb. Эти изотопы не радиоактивны, то есть стабильны. Свинец — последний элемент в периодической таблице, у которого существуют стабильные изотопы, элементы после свинца стабильных изотопов не имеют (хотя висмут-209 на практике можно считать стабильным, т.к. его период полураспада примерно в миллиард раз больше возраста Вселенной).
Изотопы 206Pb, 207Pb, 208Pb являются радиогенными и образуются в результате радиоактивного распада соответственно 238U, 235U и 232Th. Изотоп 20882Pb126 является одним из пяти существующих в природе дважды магических ядер. Схемы радиоактивного распада имеют вид:
- 238U → 206Pb 84He;
- 235U → 207Pb 74He;
- 232Th → 208Pb 64He.
Уравнения распада имеют вид соответственно:
- 206Pb =238 U (eλ8t − 1 ),
- 207Pb =235 U (eλ5t − 1 ),
- 208Pb =232 Th(eλ2t − 1 ),
где 238U, 235U, 232Th — современные концентрации изотопов; λ8 = 1,55125 ⋅ 10−10 год−1, λ5 = 9,8485 ⋅ 10−10 год−1, λ2 = 4,9475 ⋅ 10−11 год−1 — постоянные распада атомов соответственно урана 238U, урана 235U и тория 232Th.
Кроме этих изотопов, известны и нестабильные изотопы 194Pb — 203Pb, 205Pb, 209Pb — 214Pb. Из них наиболее долгоживущие — 202Pb и 205Pb (с периодами полураспада 52,5 тысяч и 15,3 млн лет).
Короткоживущие изотопы свинца 210Pb (радий D), 211Pb (актиний B), 212Pb (торий B) и 214Pb (радий B) имеют периоды полураспада соответственно 22,2 года, 36,1 мин, 10,64 ч и 26,8 мин (в скобках приведены редко используемые исторические названия этих изотопов); эти четыре радиоактивных изотопа входят в состав радиоактивных рядов урана и тория и, следовательно, также встречаются в природе, хотя и в крайне малых количествах.
Количество ядер изотопа 204Pb (нерадиогенного и нерадиоактивного) является стабильным, в минералах свинца концентрация 204Pb во многом зависит от концентрации радиогенных изотопов, образованных как в процессе распада радиоактивных ядер, так и в процессах вторичного преобразования свинецсодержащих минералов.
Поскольку число радиогенных ядер, образовавшихся в результате радиоактивного распада, зависит от времени, то и абсолютные, и относительные концентрации зависят от времени образования минерала. Этим свойством пользуются при определении возраста горных пород и минералов.
Исторические сведения
Свинец используется многие тысячелетия, поскольку он широко распространён, легко добывается и обрабатывается. Он очень ковкий и легко плавится. Выплавка свинца была первым из известных человеку металлургических процессов. Бусины из свинца, датируемые 6400 г. до н. э., были найдены в культуре Чатал-Хююк.
Самым древним предметом, сделанным из свинца, часто считается статуэтка стоящей женщины в длинной юбке времён первой династии Египта, датируемая 3100—2900 гг. до н. э., хранящаяся в Британском музее (инвентарный номер EA 32138). Она была найдена в храме Осириса в Абидосе и привезена из Египта в 1899 году.
Самым крупным производителем свинца доиндустриальной эпохи был Древний Рим, с годовым производством 80 000 тонн. Добыча римлянами свинца происходила в Центральной Европе, римской Британии, на Балканах, в Греции, Малой Азии и Испании.
После падения Римской империи в V в. н. э. использование свинца в Европе упало и оставалось на низком уровне около 600 лет. Затем свинец начали добывать в восточной Германии. Свинцовый сахар ещё с римских времён добавляли в вино для улучшения его вкусовых качеств, это стало широко распространено и продолжалось даже после запрета папской буллой в 1498 году.
Такое использование свинца в средние века приводило к эпидемиям свинцовой колики. В Древней Руси свинец использовали для покрытия крыш церквей, а также широко применяли в качестве материала навесных печатей к грамотам Позднее, в 1633 году, в Кремле был сооружён водопровод со свинцовыми трубами, вода по которому шла из Водовзводной башни, он просуществовал до 1737 года.
В алхимии свинец ассоциировался с планетой Сатурн и обозначался её символом ♄. В древности олово, свинец и сурьму часто не отличали друг от друга, считая их разными видами одного и того же металла, хотя ещё Плиний Старший различал олово и свинец, называя олово «plumbum album», а свинец — «plumbum nigrum».
Индустриальная революция привела к новому росту потребности в свинце. К началу 1840-х гг. годовое производство очищенного свинца впервые превысило 100 000 тонн и выросло до более чем 250 000 тонн в течение следующих 20 лет.
До последних десятилетий XIX века добыча свинца в основном проводилась тремя странами: Британией, Германией и Испанией. К началу XX века добыча свинца в Европе стала меньше, чем в остальном мире, благодаря увеличившейся добыче в США, Канаде, Мексике и Австралии.
Какая степень окисления у свинца?
Свинец проявляет отрицательную степень окисления (-2) в соединениях с s-элементами I и II групп, которые носят названия плюмбиды: .
Степень окисления ( 4) наиболее характерна для свинца. Она проявляется в оксиде, галогенидах, сульфиде и нитриде: .
Степень окисления ( 4) наиболее характерна для свинца. Она проявляется в оксиде, галогенидах, сульфиде и нитриде: ,
,
,
,
,
,
,
.
Известно, что свинец также проявляет в соединениях степень окисления ( 2): .
Известно, что свинец также проявляет в соединениях степень окисления ( 2): ,
,
,
,
и т.д.
Свинец также существует в виде простого вещества степень окисления, в котором равна нулю (ответ на вопрос «какая степень окисления у свинца»).
В данной реакции происходит изменение степеней окисления у элементов свинец и кислород, причем первый из них окисляется, а второй – восстанавливается. Схемы электронного баланса имеют следующий вид:
Данная реакция относится к окислительно-восстановительным, т.е. к реакциям в результате которых изменяется степень окисления одного или нескольких элементов, входящих в состав реагирующих веществ. Отдача атомом электронов, сопровождающаяся повышением его степени окисления, называется окислением, присоединение атомом электронов, приводящее к понижению его степени окисления, называется восстановлением.
Вещество, в состав которого входит окисляющийся элемент, называется восстановителем; вещество, содержащее восстанавливающийся элемент, называется окислителем.
Нахождение в природе
Содержание в земной коре — 1,6·10−3 % по массе. Самородный свинец встречается редко, круг пород, в которых он установлен, достаточно широк: от осадочных пород до ультраосновных интрузивных пород. В этих образованиях он часто образует интерметаллические соединения (например, звягинцевит (Pd,Pt)
3(Pb,Sn) и др.) и сплавы с другими элементами (например, (Pb Sn Sb)). Он входит в состав 80 различных минералов. Важнейшие из них: галенит PbS, церуссит PbCO3, англезит PbSO4 (сульфат свинца); из более сложных — тиллит PbSnS2 и бетехтинит Pb2(Cu,Fe)
21S15, а также сульфосоли свинца — джемсонит FePb4Sn6S14, буланжерит Pb5Sb4S11. Всегда содержится в рудах урана и тория, имея часто радиогенную природу. В природных условиях часто образует крупные залежи свинцово-цинковых или полиметаллических руд стратиформного типа (Холоднинское, Забайкалье), а также скарнового (Дальнегорское (бывшее Тетюхинское), Приморье;
Брокен-Хилл в Австралии) типа; галенит часто встречается и в месторождениях других металлов: колчеданно-полиметаллических (Южный и Средний Урал), медно-никелевых (Норильск), урановых (Казахстан), золоторудных и др. Сульфосоли обычно встречаются в низкотемпературных гидротермальных месторождениях с сурьмой, мышьяком, а также в золоторудных месторождениях (Дарасун, Забайкалье).
Минералы свинца сульфидного типа имеют гидротермальный генезис, минералы окисного типа часты в корах выветривания (зонах окисления) свинцово-цинковых месторождений. В кларковых концентрациях свинец входит практически во все породы. Единственное место на земле, где в породах больше свинца по сравнению с ураном — Кохистанско-Ладакхская дуга на севере Пакистана.
В таблице приведены некоторые параметры распространённости свинца в природных условиях по А. П. Виноградову:
Обобщённые концентрации элементов в минералах приведены в таблице, в скобках — количества минералов, по которым рассчитаны средние содержания компонентов.
Минерал | Свинец (общ) | Уран | Торий |
---|---|---|---|
00Настуран | 04,750 (308) | 58,87 (242) | 2,264 (108) |
00Монацит | 00,6134 (143) | 0,2619 (160) | 6,567 (150) |
000Ортит | 00,0907 (90) | 0,1154 (88) | 6,197 (88) |
000Циркон | 00,0293 (203) | 0,1012 (290) | 0,1471 (194) |
Сфен (Титанит) | 00,0158 (12) | 0,0511 (14) | 0,0295 (21) |
Применение
Нитрат свинца применяется для производства мощных смесевых взрывчатых веществ.
Азид свинца применяется как наиболее широко употребляемый детонатор (инициирующее взрывчатое вещество).
Перхлорат свинца используется для приготовления тяжёлой жидкости (плотность 2,6 г/см³), используемой во флотационном обогащении руд, он иногда применяется в мощных смесевых взрывчатых веществах как окислитель.
Фторид свинца самостоятельно, а также совместно с фторидом висмута, меди, серебра применяется в качестве катодного материала в химических источниках тока.
Висмутат свинца, сульфид свинца PbS, йодид свинца применяются в качестве катодного материала в литиевых аккумуляторных батареях.
Хлорид свинца PbCl2 в качестве катодного материала в резервных источниках тока.
Теллурид свинца PbTe широко применяется в качестве термоэлектрического материала (термо-э.д.с. 350 мкВ/К), самый широкоприменяемый материал в производстве термоэлектрогенераторов и термоэлектрических холодильников.
Диоксид свинца PbO2 широко применяется не только в свинцовом аккумуляторе, но и также на её основе производятся многие резервные химические источники тока, например — свинцово-хлорный элемент, свинцово-плавиковый элемент и другие.
Свинцовые белила, основной карбонат Pb(OH)2•PbCO3, плотный белый порошок, — получается из свинца на воздухе под действием углекислого газа и уксусной кислоты. Использование свинцовых белил в качестве красящего пигмента теперь не так распространено, как ранее, из-за их разложения под действием сероводорода H2S. Свинцовые белила применяют также для производства шпатлёвки, в технологии цемента и свинцовокарбонатной бумаги.
Арсенат и арсенит свинца применяют в технологии инсектицидов для уничтожения насекомых — вредителей сельского хозяйства (непарного шелкопряда и хлопкового долгоносика).
Борат свинца Pb(BO2)2•H2O, нерастворимый белый порошок, используют для сушки картин и лаков, а вместе с другими металлами — в качестве покрытий стекла и фарфора.
Хлорид свинца PbCl2, белый кристаллический порошок, растворим в горячей воде, растворах других хлоридов и особенно хлорида аммония NH4Cl. Его применяют для приготовления мазей при обработке опухолей.
Хромат свинца PbCrO4 известен как хромовый жёлтый краситель, является важным пигментом для приготовления красок, для окраски фарфора и тканей. В промышленности хромат применяют в основном в производстве жёлтых пигментов.
Нитрат свинца Pb(NO3)2 — белое кристаллическое вещество, хорошо растворимое в воде. Это вяжущее ограниченного применения. В промышленности его используют в спичечном производстве, крашении и набивке текстиля, окраске рогов и гравировке.
Сульфат свинца PbSO4, нерастворимый в воде белый порошок, применяют как пигмент в аккумуляторах, литографии, в технологии набивных тканей.
Сульфид свинца PbS, чёрный нерастворимый в воде порошок, используют при обжиге глиняной посуды и для обнаружения ионов свинца.
Тетраэтилсвинец (C2H5)4Pb до недавнего времени применялся к качестве присадки к бензину для повышения октанового числа.
Поскольку свинец хорошо поглощает γ-излучение, он используется для радиационной защиты в рентгеновских установках и в ядерных реакторах. Кроме того, свинец рассматривается в качестве теплоносителя в проектах перспективных ядерных реакторов на быстрых нейтронах.
Свинец издавна применялся для изготовления пуль (а до изобретения огнестрельного оружия — других метательных снарядов, — например, для пращи) благодаря своей высокой плотности и, как следствие, большому импульсу и пробивной способности снаряда.
Значительное применение находят сплавы свинца. Пьютер (сплав олова со свинцом), содержащий 85—90 % Sn и 15—10 % Pb, формуется, недорог и используется в производстве домашней утвари. Припой, содержащий 67 % Pb и 33 % Sn, применяют в электротехнике. Сплавы свинца с сурьмой используют в производстве пуль и типографского шрифта, а сплавы свинца, сурьмы и олова — для фигурного литья и подшипников.
Сплавы свинца с сурьмой обычно применяют для оболочек кабелей и пластин электрических аккумуляторов. Было время, когда на оболочки кабелей шла значительная часть производимого в мире свинца, благодаря хорошим влагозащитным свойствам таких изделий. Однако впоследствии свинец в существенной мере вытеснили из этой области алюминий и полимеры.
Таблица степеней окисления химических элементов (1 часть):
Атомный номер | Химический элемент | Символ | Степень окисления |
1 | Водород | H | 1, 0, -1 |
2 | Гелий | He | 0 |
3 | Литий | Li | 1 |
4 | Бериллий | Be | 0, 1, 2 |
5 | Бор | B | -1, 0, 1, 2, 3 |
6 | Углерод | C | -4 , -3 , -2 , -1 , 0 , 1, 2, 3, 4 |
7 | Азот | N | -3 , -2, -1, 0, 1, 2, 3 , 4, 5 |
8 | Кислород | O | -2, -1, -0,5, 0, 1, 2 |
9 | Фтор | F | -1, 0 |
10 | Неон | Ne | 0 |
11 | Натрий | Na | -1, 0, 1 |
12 | Магний | Mg | 0, 2 |
13 | Алюминий | Al | 0, 1, 2, 3 |
14 | Кремний | Si | -4 , -3, -2, -1, 0, 1, 2, 3, 4 |
15 | Фосфор | P | -3 , -2, -1, 0, 1, 2, 3 , 4, 5 |
16 | Сера | S | -2 , -1, 0 , 1 , 2 , 3, 4 , 5, 6 |
17 | Хлор | Cl | -1 , 0, 1 , 2, 3 , 4, 5 , 6, 7 |
18 | Аргон | Ar | 0 |
19 | Калий | K | 0, 1 |
20 | Кальций | Ca | 0, 2 |
21 | Скандий | Sc | 0, 1, 2, 3 |
22 | Титан | Ti | -2, -1, 0, 1, 2, 3, 4 |
23 | Ванадий | V | -3, -1, 0, 1, 2, 3, 4, 5 |
24 | Хром | Cr | -4, -2, -1, 0, 1, 2 , 3 , 4, 5, 6 |
25 | Марганец | Mn | -3, -2, -1, 0, 1, 2 , 3, 4 , 5, 6, 7 |
26 | Железо | Fe | -4, -2, -1, 0, 1, 2 , 3 , 4, 5, 6 , 7 |
27 | Кобальт | Co | -3, -1, 0, 1, 2 , 3 , 4, 5 |
28 | Никель | Ni | -2, -1, 0, 1, 2 , 3, 4 |
29 | Медь | Cu | -2, 0, 1, 2 , 3, 4 |
30 | Цинк | Zn | -2, 0, 1, 2 |
31 | Галлий | Ga | -5, -4, -3, -2, -1, 1, 2, 3 |
32 | Германий | Ge | -4 -3, -2, -1, 0, 1, 2 , 3, 4 |
33 | Мышьяк | As | -3, -2, -1, 0, 1, 2, 3, 4, 5 |
34 | Селен | Se | -2, -1, 0, 1, 2, 3, 4, 5, 6 |
35 | Бром | Br | -1, 0, 1, 3, 4, 5, 7 |
Таблица степеней окисления химических элементов (2 часть):
36 | Криптон | Kr | 0, 1, 2 |
37 | Рубидий | Rb | -1, 0, 1 |
38 | Стронций | Sr | 0, 1, 2 |
39 | Иттрий | Y | 0, 1, 2, 3 |
40 | Цирконий | Zr | -2, 0, 1, 2, 3, 4 |
41 | Ниобий | Nb | -3, -1, 0, 1, 2, 3, 4, 5 |
42 | Молибден | Mo | -4, -2, -1, 0, 1, 2, 3, 4, 5, 6 |
43 | Технеций | Tc | -3, -1, 0, 1, 2, 3, 4, 5, 6, 7 |
44 | Рутений | Ru | -4, -2, 0, 1, 2, 3, 4, 5, 6, 7, 8 |
45 | Родий | Rh | -3, -1, 0, 1, 2, 3, 4, 5, 6 |
46 | Палладий | Pd | 0, 1, 2, 3, 4, 5, 6 |
47 | Серебро | Ag | -2, -1, 1, 2, 3 |
48 | Кадмий | Cd | -2, 1, 2 |
49 | Индий | In | -5, -2, -1, 1, 2, 3 |
50 | Олово | Sn | -4, -3, -2, -1, 0, 1, 2, 3, 4 |
51 | Сурьма | Sb | -3, -2, -1, 0, 1, 2, 3, 4, 5 |
52 | Теллур | Te | 2, -1, 1, 2, 3, 4, 5, 6 |
53 | Йод | I | -1, 0, 1, 2, 3, 4, 5, 6, 7 |
54 | Ксенон | Xe | 0, 1, 2, 4, 6, 8 |
55 | Цезий | Cs | -1, 1 |
56 | Барий | Ba | 1, 2 |
57 | Лантан | La | 0, 1, 2, 3 |
58 | Церий | Ce | 1, 2, 3, 4 |
59 | Празеодим | Pr | 0, 1, 2, 3, 4, 5 |
60 | Неодим | Nd | 0, 2, 3, 4 |
61 | Прометий | Pm | 2, 3 |
62 | Самарий | Sm | 0, 2, 3 |
63 | Европий | Eu | 1, 2, 3 |
64 | Гадолиний | Gd | 0, 1, 2, 3 |
65 | Тербий | Tb | 0, 1, 2, 3, 4 |
66 | Диспрозий | Dy | 0, 1, 2, 3, 4 |
67 | Гольмий | Ho | 0, 1, 2, 3 |
68 | Эрбий | Er | 0, 1, 2, 3 |
69 | Тулий | Tm | 2, 3 |
70 | Иттербий | Yb | 1, 2, 3 |
Таблица степеней окисления химических элементов (3 часть):
71 | Лютеций | Lu | 0, 1, 2, 3 |
72 | Гафний | Hf | -2, 0, 1, 2, 3, 4 |
73 | Тантал | Ta | -3, -1, 1, 2, 3, 4, 5 |
74 | Вольфрам | W | -4, -2, -1, 0, 1, 2, 3, 4, 5, 6 |
75 | Рений | Re | -3, -1, 0, 1, 2, 3, 4, 5, 6, 7 |
76 | Осмий | Os | -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 |
77 | Иридий | Ir | -3, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
78 | Платина | Pt | -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 |
79 | Золото | Au | -3, -2, -1, 0, 1, 2, 3, 5 |
80 | Ртуть | Hg | -2, 1, 2 |
81 | Таллий | Tl | -5, -2, -1, 1, 2, 3 |
82 | Свинец | Pb | -4, -2, -1, 0, 1, 2, 3, 4-4, -2, -1, 0, 1, 2, 3, 4 |
83 | Висмут | Bi | -3, -2, -1, 1, 2, 3, 4, 5 |
84 | Полоний | Po | -2, 2, 4, 5, 6 |
85 | Астат | At | -1, 1, 3, 5, 7 |
86 | Радон | Rn | 0, 2, 6, 8 |
87 | Франций | Fr | 0, 1 |
88 | Радий | Ra | 2 |
89 | Актиний | Ac | 3 |
90 | Торий | Th | 1, 2, 3, 4 |
91 | Протактиний | Pa | 2, 3, 4, 5 |
92 | Уран | U | 1, 2, 3, 4, 5, 6 |
93 | Нептуний | Np | 2, 3, 4, 5, 6, 7 |
94 | Плутоний | Pu | 2, 3, 4, 5, 6, 7 |
95 | Америций | Am | 2, 3, 4, 5, 6, 7 |
96 | Кюрий | Cm | 3, 4, 5, 6 |
97 | Берклий | Bk | 2, 3, 4, 5 |
98 | Калифорний | Cf | 2, 3, 4, 5 |
99 | Эйнштейний | Es | 2, 3, 4 |
100 | Фермий | Fm | 2, 3 |
101 | Менделевий | Md | 2, 3 |
102 | Нобелий | No | 2, 3 |
103 | Лоуренсий | Lr | 3 |
104 | Резерфордий (Курчатовий) | Rf | 2, 3, 4 – предположительно |
105 | Дубний (Нильсборий) | Db | 3, 4, 5 – предположительно |
106 | Сиборгий | Sg | 0, 3, 4, 5, 6 – предположительно |
107 | Борий | Bh | 3, 4, 5, 7 – предположительно |
108 | Хассий | Hs | 2, 3, 4, 6, 8 – предположительно |
109 | Мейтнерий | Mt | 1, 3, 4, 6, 8, 9 – предположительно |
110 | Дармштадтий | Ds | 0, 2, 4, 6, 8 – предположительно |
Коэффициент востребованности 2 897
Таблица степени окисления химических элементов
Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.
Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N2, H2, Cl2).
Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.
В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na 1I-1, Mg 2Cl-12, Al 3F-13, Zr 4Br-14.
При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.
Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).
Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно ( 1) и ( 2).
Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера – (-2), 0, ( 2), ( 4), ( 6) и др.).
Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:
Порядковый номер | Русское / англ. название | Химический символ | Степень окисления |
1 | Водород / Hydrogen | H | ( 1), (-1) |
2 | Гелий / Helium | He | 0 |
3 | Литий / Lithium | Li | ( 1) |
4 | Бериллий / Beryllium | Be | ( 2) |
5 | Бор / Boron | B | (-1), 0, ( 1), ( 2), ( 3) |
6 | Углерод / Carbon | C | (-4), (-3), (-2), (-1), 0, ( 2), ( 4) |
7 | Азот / Nitrogen | N | (-3), (-2), (-1), 0, ( 1), ( 2), ( 3), ( 4), ( 5) |
8 | Кислород / Oxygen | O | (-2), (-1), 0, ( 1), ( 2) |
9 | Фтор / Fluorine | F | (-1) |
10 | Неон / Neon | Ne | 0 |
11 | Натрий / Sodium | Na | ( 1) |
12 | Магний / Magnesium | Mg | ( 2) |
13 | Алюминий / Aluminum | Al | ( 3) |
14 | Кремний / Silicon | Si | (-4), 0, ( 2), ( 4) |
15 | Фосфор / Phosphorus | P | (-3), 0, ( 3), ( 5) |
16 | Сера / Sulfur | S | (-2), 0, ( 4), ( 6) |
17 | Хлор / Chlorine | Cl | (-1), 0, ( 1), ( 3), ( 5), ( 7), редко ( 2) и ( 4) |
18 | Аргон / Argon | Ar | 0 |
19 | Калий / Potassium | K | ( 1) |
20 | Кальций / Calcium | Ca | ( 2) |
21 | Скандий / Scandium | Sc | ( 3) |
22 | Титан / Titanium | Ti | ( 2), ( 3), ( 4) |
23 | Ванадий / Vanadium | V | ( 2), ( 3), ( 4), ( 5) |
24 | Хром / Chromium | Cr | ( 2), ( 3), ( 6) |
25 | Марганец / Manganese | Mn | ( 2), ( 3), ( 4), ( 6), ( 7) |
26 | Железо / Iron | Fe | ( 2), ( 3), редко ( 4) и ( 6) |
27 | Кобальт / Cobalt | Co | ( 2), ( 3), редко ( 4) |
28 | Никель / Nickel | Ni | ( 2), редко ( 1), ( 3) и ( 4) |
29 | Медь / Copper | Cu | 1, 2, редко ( 3) |
30 | Цинк / Zinc | Zn | ( 2) |
31 | Галлий / Gallium | Ga | ( 3), редко ( 2) |
32 | Германий / Germanium | Ge | (-4), ( 2), ( 4) |
33 | Мышьяк / Arsenic | As | (-3), ( 3), ( 5), редко ( 2) |
34 | Селен / Selenium | Se | (-2), ( 4), ( 6), редко ( 2) |
35 | Бром / Bromine | Br | (-1), ( 1), ( 5), редко ( 3), ( 4) |
36 | Криптон / Krypton | Kr | 0 |
37 | Рубидий / Rubidium | Rb | ( 1) |
38 | Стронций / Strontium | Sr | ( 2) |
39 | Иттрий / Yttrium | Y | ( 3) |
40 | Цирконий / Zirconium | Zr | ( 4), редко ( 2) и ( 3) |
41 | Ниобий / Niobium | Nb | ( 3), ( 5), редко ( 2) и ( 4) |
42 | Молибден / Molybdenum | Mo | ( 3), ( 6), редко ( 2), ( 3) и ( 5) |
43 | Технеций / Technetium | Tc | ( 6) |
44 | Рутений / Ruthenium | Ru | ( 3), ( 4), ( 8), редко ( 2), ( 6) и ( 7) |
45 | Родий / Rhodium | Rh | ( 4), редко ( 2), ( 3) и ( 6) |
46 | Палладий / Palladium | Pd | ( 2), ( 4), редко ( 6) |
47 | Серебро / Silver | Ag | ( 1), редко ( 2) и ( 3) |
48 | Кадмий / Cadmium | Cd | ( 2), редко ( 1) |
49 | Индий / Indium | In | ( 3), редко ( 1) и ( 2) |
50 | Олово / Tin | Sn | ( 2), ( 4) |
51 | Сурьма / Antimony | Sb | (-3), ( 3), ( 5), редко ( 4) |
52 | Теллур / Tellurium | Te | (-2), ( 4), ( 6), редко ( 2) |
53 | Иод / Iodine | I | (-1), ( 1), ( 5), ( 7), редко ( 3), ( 4) |
54 | Ксенон / Xenon | Xe | 0 |
55 | Цезий / Cesium | Cs | ( 1) |
56 | Барий / Barium | BA | ( 2) |
57 | Лантан / Lanthanum | La | ( 3) |
58 | Церий / Cerium | Ce | ( 3), ( 4) |
59 | Празеодим / Praseodymium | Pr | ( 3) |
60 | Неодим / Neodymium | Nd | ( 3), ( 4) |
61 | Прометий / Promethium | Pm | ( 3) |
62 | Самарий / Samarium | Sm | ( 3), редко ( 2) |
63 | Европий / Europium | Eu | ( 3), редко ( 2) |
64 | Гадолиний / Gadolinium | Gd | ( 3) |
65 | Тербий / Terbium | Tb | ( 3), ( 4) |
66 | Диспрозий / Dysprosium | Dy | ( 3) |
67 | Гольмий / Holmium | Ho | ( 3) |
68 | Эрбий / Erbium | Er | ( 3) |
69 | Тулий / Thulium | Tm | ( 3), редко ( 2) |
70 | Иттербий / Ytterbium | Ib | ( 3), редко ( 2) |
71 | Лютеций / Lutetium | Lu | ( 3) |
72 | Гафний / Hafnium | Hf | ( 4) |
73 | Тантал / Tantalum | Ta | ( 5), редко ( 3), ( 4) |
74 | Вольфрам / Tungsten | W | ( 6), редко ( 2), ( 3), ( 4) и ( 5) |
75 | Рений / Rhenium | Re | ( 2), ( 4), ( 6), ( 7), редко (-1), ( 1), ( 3), ( 5) |
76 | Осмий / Osmium | Os | ( 3), ( 4), ( 6), ( 8), редко ( 2) |
77 | Иридий / Iridium | Ir | ( 3), ( 4), ( 6), редко ( 1) и ( 2) |
78 | Платина / Platinum | Pt | ( 2), ( 4), ( 6), редко ( 1) и ( 3) |
79 | Золото / Gold | Au | ( 1), ( 3), редко ( 2) |
80 | Ртуть / Mercury | Hg | ( 1), ( 2) |
81 | Талий / Thallium | Tl | ( 1), ( 3), редко ( 2) |
82 | Свинец / Lead | Pb | ( 2), ( 4) |
83 | Висмут / Bismuth | Bi | ( 3), редко ( 3), ( 2), ( 4) и ( 5) |
84 | Полоний / Polonium | Po | ( 2), ( 4), редко (-2) и ( 6) |
85 | Астат / Astatine | At | — |
86 | Радон / Radon | Ra | 0 |
87 | Франций / Francium | Fr | — |
88 | Радий / Radium | Ra | ( 2) |
89 | Актиний / Actinium | Ac | ( 3) |
90 | Торий / Thorium | Th | ( 4) |
91 | Проактиний / Protactinium | Pa | ( 5) |
92 | Уран / Uranium | U | ( 3), ( 4), ( 6), редко ( 2) и ( 5) |