Углекислый газ легче или же тяжелее воздуха? Характеристика газа / Справочник :: Бингоскул

Углекислый газ легче или же тяжелее воздуха? Характеристика газа / Справочник :: Бингоскул Кислород

Горение и окисление

ХИМИЯ ВОКРУГ НАС

|/ак идёт горение в примусе и керосинке. Наиболее яр — ким примером химических реакций, идущих при уча­стии кислорода воздуха, является горение — тот процесс, с помощью которого мы получаем тепло и свет. Какое бы

Топливо мы ни сжигали — уголь или дрова, керосин или бензии, спирт или светильный газ — главная химическая реакция при горении их одна и та же: углерод и водород, входящие в состав молекул топлива, соединяются с кис­лородом воздуха и образуют углекислоту и воду. Общеиз­вестно, что керосинка даёт жёлтое, светящее пламя, а при­мус — голубое или фиолетовое, почти не светящее пламя. В обоих случаях топливо одно и то же — керосин. По­чему же это происходит?

Керосин — это смесь различных углеводородов, соеди­нений углерода с водородом. Для примера возьмём один из углеводородов керосина — нонан, имеющий состав СуНго. При горении нонан соединяется с кислородом и об­разуются углекислота и вода. Начальное и конечное со­стояния этого процесса можно изобразить химическим уравнением:

С9Н20 1402 — 9 С02 10 Н20 (пар) теплота,

Написав такое уравнение, мы допустили, что углеводород сгорает полностью. Это и происходит в исправном примусе. В примусе керосин поступает в горелку под давлением. Испаряясь в нагретой горелке й вырываясь сильной струёй через форсунку, керосин хорошо перемешивается с воз­духом. Смесь получается настолько богатой кислородом, что керосин сгорает полностью. Кроме того, пары керо­сина, проходя через раскалённую часть горелки, не только нагреваются, но и химически изменяются: сложные моле­кулы углеводородов при температуре 400—500 градусов распадаются на более простые, сгорающие легче. Этот распад обычно сопровождается выделением небольшого количества твёрдого углерода — кокса; кокс постепенно засоряет горелку, поэтому время от времени её нужно «прожигать».

Мы знаем, что керосинка всегда даёт копоть или сажу, то-есть очень мелкие частицы угля. Значит, в керосинке идёт неполное сгорание керосина. Керосин испаряется с поверхности фитиля и только тут смешивается с возду­хом. Количество воздуха внутри пламени оказывается не­достаточным. Поэтому и образуются мельчайшие раска­лённые частички угля, от которых ярко светится пламя.

Почему дрова и каменный уголь, сгорая, дают пламя, а древесный уголь горит без пламени? Различные виды твёрдого топлива сгорают по-разному: дрова и каменный

Уголь образуют при горении пламя, а древесный уголь пламени не даёт. Какова же разница между ними?

Древесная масса и каменный уголь — смеси сложных веществ, богатых углеродом. Они содержат также кисло­род и водород. При нагревании дров и каменного угля сложные вещества расщепляются на более простые и в то же время более летучие вещества. Эти вещества, сго­рая, и образуют пламя. Дрова дают большее пламя, чем каменный уголь: они образуют больше летучих веществ.

Древесный же уголь получают неполным сожжением дерева. Хороший древесный уголь — это почти чистый уг­лерод; к нему примешаны только минеральные — вещества, дающие после сгорания золу. Поэтому древесный уголь не образует летучих продуктов и горит без пламени.

Все жидкие вещества и горючие газы, разлагающиеся при высокой температуре с выделением летучих продук­тов, при горении образуют пламя. Твёрдые вещества, не способные давать летучие продукты разложения, горят без пламени. При неполном горении всегда образуется дым, состоящий из твёрдых частичек несгоревшего угля и газообразных продуктов горения — окиси углерода, уг­лекислоты, водяных паров.

Почему керосиновая лампа коптит, а рано закрытая печка даёт угар. Мы можем управлять химическими реакциями, заставлять их протекать нужным нам обра­зом. Примеры этому легко найти в нашем быту.

Керосиновая лампа стала коптить. Ясно, что если вы­деляется копоть, горение идёт не полно. Мы убавили фи­тиль — копоть перестала образовываться. Почему? По­тому, что мы изменили условия горения. Убавив фитиль, мы уменьшили скорость испарения керосина. Количество же поступающего в лампу воздуха осталось прежним. Поэтому горение стало более полным.

А почему рано закрытая печь даёт угар? — Потому, что нарушается режим горения и вместо одной реакции идёт другая. При недостатке воздуха, поступающего в печь, горение идёт не до конца: вместо углекислоты, СО2, обра­зуется окись углерода или, как её иначе называют, угар­ный газ СО. Угарный газ невидим, так как, в отличие от дыма, он не содержит твёрдых частиц. Он очень ядовит.

Окись углерода образуется и при открытой трубе, но так как приток кислорода в печь достаточный, она сгорает и образует углекислоту, уходящую в трубу
(рис. 7, А). При закрытой же трубе продукты горения вы­ходят через печную дверцу в помещение. Если в печи осталось слишком много раскаленного угля, то притока воздуха хватает только на образование окиси углерода и в комнате появляется угар (рис. 7, £).

ГОРЕНИЕ И ОКИСЛЕНИЕГОРЕНИЕ И ОКИСЛЕНИЕУглекислый газ легче или же тяжелее воздуха? Характеристика газа / Справочник :: Бингоскул

Рис. 7. А нормальное горение при открытой трубе; Б — образование угар­ного газа при большом количестве угля и закрытой трубе.

подпись: рис. 7. а нормальное горение при открытой трубе; б — образование угарного газа при большом количестве угля и закрытой трубе.Эти простые примеры показывают, что, изменяя со­отношения между количествами реагирующих веществ, можно управлять хи­мической реакцией.

Чем отличается горение в печи от го­рения в живом орга­низме? В печке сго­рает топливо. Для организма топливом служит пища. И в организме и в печке углеродистые веще­ства сгорают, пре­вращаясь в углеки­слоту и в воду.

В этом — сходство.

Разница же состоит в том, что в печке горение происходит при высокой тем­пературе, а в живом организме — при низкой и значи­тельно медленнее.

В печах, особенно промышленного типа — доменных, стекольных и др., температура превышает 1000 градусов. Тело человека имеет в среднем температуру 36,6 градуса. Химики установили, что повышение температуры на 10 градусов почти удваивает скорость реакции. Значит, го­рение в печи идёт во много раз быстрее, чем в организме.

Однако дело не только в этом. При высокой темпера­туре реакция может протекать совсем иным путём. При 1000 градусов некоторая часть молекул кислорода (около 1,5 процента) распадается на атомы: 02^20. Значит, горение при высоких температурах можно объяснить тем, что с топливом вступают в реакцию свободные атомы кислорода, число которых по мере их расходования по­полняется путём распада, диссоциации, новых молекул кислорода. Но в живых организмах молекулы кислорода не могут распадаться на атомы. Каким же образом происходит горение в организмах?

Про кислород:  Диффузионное горение - Большая Энциклопедия Нефти и Газа, статья, страница 4

Общую теорию таких процессов разработал в конце прошлого столетия русский академик А. Н. Бах. Рядом опытов с простыми углеродистыми соединениями и с ве­ществами, содержащимися в животных и растительных организмах, А. Н. Бах доказал, что при обыкновенной тем­пературе к молекулам этих веществ присоединяются це­лые молекулы кислорода. При этом образуются такие со­единения, которые способны окислять другие вещества так же легко, как и атомарный кислород. Эти соединения, на­зываемые перекисями, являются промежуточными продуктами окисления.

Как же построены молекулы перекисей и какими свой­ствами они обладают?

Познакомимся сначала с простейшей перекисью — пе­рекисью водорода Н202. Строение её изображается фор­мулой Н—О—О—Н. Перекись водорода неустойчива, при хранении она медленно разлагается на воду и кислород: Н202=Н20 0. Значит, один из атомов кислорода в пере­киси «подвижен»,«активен». Поэтому перекись водорода является хорошим окислителем.

В организмах животных и растений перекиси водорода нет, но с группой атомов —О—О—, характерной для пе­рекисей, могут быть связаны атомы углерода органиче­ских соединений. Такие перекиси называют переки­сями органических соединений, и они обна­ружены в живых организмах. Им-то и принадлежит та исключительная роль в процессах медленного окисления в организме, на которую указал А. Н. Бах.

В организмах животных окисление пищевых материа­лов происходит в крови. В красных кровяных тельцах на­ходится сложное белковое вещество, гемоглобин, окрашивающий кровь в красный цвет. В состав гемогло­бина входит железо, придающее ему способность соеди­няться с кислородом. При дыхании гемоглобин окисляется (в лёгких) и превращается в оксигемоглобин. Сам оксигемоглобин не является настоящей перекисью, так как он отдаёт весь присоединённый кислород, а не половину, как это делают истинные перекиси. Но он легко превра­щает в перекиси некоторые пищевые вещества, попадаю­щие в кровь, отдавая им свой кислород, и вновь переходит в гемоглобин. Кислород расходуется на окисление пище­вых материалов, на выработку энергии, необходимой для поддержания жизни.

Есть ли разница между горением и окислением? По

Сходству с горением топлива естественно считать горением все химические процессы, протекающие с выделением тепла и света. Слово «горение» описывает внешние при­знаки и только одну сторону химической реакции — превращение химической энергии в тепловую и световую.

Но для химика описания только этой стороны реакции недостаточно. Он хочет знать, что происходит с каждым из атомов, входящих в состав вещества, как эти атомы из­меняются во время реакции. И вот если с этой сто­роны посмотреть на реакции, происходящие при горении, то оказывается, что всегда какой-либо из атомов сгораю­щей молекулы увеличивает свою положительную валент­ность. Например, при сгорании СО в С02 положительная валентность углерода возрастает с 2 до 4, так как атом углерода оказывается связанным уже не с одним, а с двумя атомами кислорода. Углерод при горении окисля­ется. Поэтому мы называем окислением реакцию, в которой како й-л ибо элемент увеличи­вает свою положительную валентность.

А что делается при окислении с самим окисляющим веществом? В нашем примере окисляющим веществом служит кислород воздуха, простое вещество, которому мы условились (стр. 22) приписывать до реакции нулевую ва­лентность. Входя в состав молекулы СОг, атом кислорода становится двухвалентным отрицательным. Реакцию, в которой атом каког о-л ибо элемента уве­личивает свою отрицательную валент­ность, называют восстановлением. Следо­вательно, кислород воздуха, окисляя углерод СО, сам при этом восстанавливается. Из нашею примера мы ви­дим, чго окисление и восстановление—два процесса — близнеца: они всегда сопровождают друг друга и невоз­можны один без другого.

Всякое ли окисление протекает как горение? Железо, окисляясь, ржавеет. Но разве мы можем сказать, что при этом железо горит. Конечно, нет. Разве в живом орга­низме окисление сопровождается выделением света? — Нет, происходит только выделение тепла. Значит, окисле­ние не всегда сопровождается горением. Но, как правило, все процессы горения являются окислением.

Могут ли горение и окисление происходить без кисло­рода? Окисляемый атом вовсе не обязательно должен отдавать свои валентные электроны именно атому кисло­рода. Очень легко это происходит и с другими элементами. Вернёмся к опыту, описанному на стр. 12. Железо, кото­рое мы погружаем в раствор медного купороса,— простое вещество с нулевой валентностью. Железо активнее меди и вытесняет из раствора медь. В этой реакции вытеснения атом железа отдаёт атому меди 2 электрона и сам приоб­ретает валентность 2. Значит, и здесь железо окис­ляется! Атом же меди, забрав у атома железа 2 электрона, изменяет валентность с 2 до нуля, восстанавливается.

Точно так же можно рассмотреть и реакцию между се­рой и железом (стр. 9). Оба они — простые вещества с нулевой валентностью. После реакции валентность же­леза 2, а серы — 2, следовательно, железо окислилось, а сера восстановилась. Вспомним, что реакция между се­рой и железом сопровождается выделением тепла и света, то-есть горением, хотя кислород в ней и не участвует. Зна­чит, не только окисление, но и горение может происходить без участия кислорода.

Почему железо ржавеет, а золото и серебро — нет? Из всех металлов наиболее широко используется в технике и в быту железо. Большим недостатком железа служит то, что оно легко соединяется с кислородом воздуха и водой, ржавеет. Так как ржавчина непрочно связана с поверхно­стью металла, она легко стирается, распыляется, при­водя к большим потерям металла. Ржавление и подоб­ные ему процессы разрушения металлов называют кор — роз и е й.

Подсчитано, что в результате коррозии во всём мире ежегодно теряется больше 30 миллионов тонн металлов. Это настоящее бедствие. Поэтому химики и физики упорно работают над вопросами борьбы с коррозией.

Ржавчина — это смесь водной закиси железа Ре (ОН)г, окиси железа Ре203, окалины Ре304 и некоторых других веществ. То, что железо окисляется уже при низкой тем­пературе, объясняется его значительной химической ак­тивностью.

Другое дело — серебро, золото, платина и другие бла­городные металлы. Их активность очень мала. Ядра их атомов цепко удерживают валентные электроны и поэтому трудно окисляются. Соединения этих металлов непрочны, они легко распадаются с выделением свободных метал­лов. Хлористое и бромистое серебро, например, разла­гается на свету. На этой реакции основана вся фотокино­промышленность [23]).

Неустойчивость солей серебра можно доказать инте­ресным опытом. Подогреем в стаканчике нашатырный спирт (это — водный раствор аммиака) до 50—60 граду­сов и нальём в него при перемешивании несколько капель раствора ляписа (азотнокислого серебра). Затем добавим несколько капель формалина или раствора виноградного сахара — глюкозы. Через несколько минут на стенках ста­канчика образуется серебряное зеркало, а в растворе по­явится тёмная муть. Формалин или глюкоза восстанавли­вают серебро из его соли. Эта реакция используется для изготовления зеркал.

Про кислород:  Газообмен в лёгких и тканях. Регуляция дыхания — урок. Биология, 8 класс.

* *

*

Итак, мы познакомились с составом воздуха и отме­тили особую роль кислорода в природе, которую ему обес­печивает его большая химическая активность. Но очень многие реакции с участием кислорода шли бы совсем иначе, а некоторые — не были бы даже возможны, если бы на помощь кислороду при его воздействии на другие вещества не приходила вода. Вода, подобно кислороду, играет в природе громадную роль и обладает многими очень важными свойствами. Их мы и рассмотрим в сле­дующем разделе.

Это ядохимикаты для сельскохозяйственной отрасли. Они предназначены для уничтожения вредителей растений на полях, в хранилищах, магазинах. Сейчас пестициды купить можно в стационарных агрокомпаниях, интернет-магазинах. Они делятся на такие группы: инсектициды …

Натрия гидроксид (Na OH), также известный как щелочь или каустическая сода, представляет собой едкое металлическое основание. Щелочь, каустическая сода обширно употребляется в почти во всех отраслях индустрии, как правило, в …

Уже прошли ситуации, когда вам нужно бегать с тяжелыми сумками, покупая хорошее чистящее средство. Существующие интернет-сайты помогут вам купить необходимые одновременно. Работники помогут выбрать, расскажут о правилах использования выбранного инструмента. …

Краткие сведения о кислороде, пропан-бутане и ацетилене — газресурс

Кислород — это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

Кислород — это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации.

Технический кислород для газопламенных работ получают в специальных установках из атмосферного воздуха в жидком состоянии. Жидкий кислород — это легко подвижная, голубоватая жидкость. Температура кипения (начало испарения) жидкого кислорода минус 183° С.

При нормальных условиях и температуре минус 183° С. легко испаряется, превращаясь в газообразное состояние. При повышении температуры интенсивность испарении увеличивается. Из 1 литра жидкого кислорода, образуется около 860 литров газообразного.

Кислород обладает большой химической активностью. Реакция соединения его с маслами, жирами, угольной пылью, ворсинками ткани и т.д., приводит их к мгновенному окислению, самовоспламенению и взрыву при обычных температурах.

Кислород в смеси с горючими газами и парами горючих жидкостей образует в широких пределах взрывчатые смеси.

«Кислород газообразный технический» согласно ГОСТ 5583- 78 выпускается для сварки и резки трех сортов: 1-й — чистотой не менее 99,7%, 2-й — не менее 99,5%, 3-й — не менее 99,2% по объёму. Чем меньше в кислороде газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода. На предприятие поставляется в газообразном состоянии, в стальных кислородных баллонах «голубого» цвета ёмкостью 40 дм. куб. и давлением 150 кгс/см2. Сжатый кислород хранят и транспортируют в баллонах по ГОСТ 949-73.


Пропан — технический, бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н6, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. Пропанобутановая смесь – это смесь газов главным образом технического пропана и бутана. Эти газы относятся к группе тяжёлых углеводородов. Сырьём для их получения являются природные нефтяные газы, отходящие газы нефтеперерабатывающих заводов. Эти газы в чистом виде или в виде смесей при нормальной температуре и на большом повышении давления могут быть переведены из газообразного состояния в жидкое состояние.Хранится и транспортируется пропанобутановая смесь в жидком состоянии, а используется в газообразном.

Газообразная пропанобутановая смесь — это горючий газ без вкуса, запаха и цвета, тяжелее воздуха в 2 раза, поэтому при утечке газа он не рассеивается в атмосфере, а опускается вниз и заполняет углубления пола или местности.

При содержании газа пропан-бутана в воздухе или кислороде до нижнего предела взрываемости и внесении открытого огня происходит горение газа вокруг источника открытого огня.

При содержании газа пропан-бутана в воздухе или кислороде свыше нижнего предела взрываемости и внесении открытого огня или искры происходит пожар, т.е. интенсивное горение газа.

Газообразная пропанобутановая смесь при атмосферном давлении не обладает токсичным (отравляющим) воздействием на организм человека, так как мало растворяется в крови. Но, попадая в воздух, смешивается с ним, вытесняет и уменьшает содержание кислорода в воздухе. Человек, находящийся, а такой атмосфере испытывает кислородное голодание, а при значительных концентрациях газа в воздухе может погибнуть от удушья.

Предельно допустимая концентрация пропан-бутана в воздухе рабочей зоны должна быть не более 300 мг/м3(в пересчёте на углерод).При попадании жидкого пропан-бутана на кожные покровы тела, нормальная температура которого 36,6 град. С, происходит быстрое его испарение и интенсивный отбор тепла с поверхности тела, затем наступает обморожение.

По ГОСТ 20448-80 промышленность выпускает пропанобутановую смесь 3 марок:

  • пропан технический, с содержанием пропана более 93%, бутана — менее 3 процентов;
  • бутан технический, с содержанием бутана менее 93%, пропана не более 4 процентов;
  • пропанобутановая смесь, 2-х типов: зимняя и летняя.

На предприятия для газопламенной обработки металлов поставляется пропанобутановая смесь в стальных баллонах зимняя и летняя.

Зимняя пропанобутановая смесь содержит 15% пропана, 25% бутана и прочих компонентов.

Летняя пропанобутановая смесь содержит 60% бутана, 40% пропана и прочих компонентов.

Для сжигания I куб. м газообразной пропано-бутановой смеси требуется 25-27 куб. м воздуха или 3,58 — 3,63 кг кислорода.

Температура воспламенения с воздухом:

  • пропана — 510 град. С;
  • бутана — 540 град. С
Про кислород:  АЛЬВЕОЛЯРНЫЙ ВОЗДУХ — Большая Медицинская Энциклопедия

Температура воспламенения пропанобутановой смеси:

  • с воздухом 490-510 град. С;
  • с кислородом — 465-480 град. С.

Температура пламени пропанобутановой смеси с кислородом зависит от её состава и равна 2200-2680 град. С. При окислительном пламени (избыток кислорода) температура повышается.

Теплотворная способность пропанобутановой смеси равна 93000 Дж/м куб. (22000 ккал/м куб.).

Скорость горения пропанобутановой смеси:

  • при обычном горении 0,8 – 1,5 м/сек.;
  • при дистанционном (со взрывом) 1,5 — 3,5 км/сек.

Пределы взрывоопасности пропан-бутана при нормальном давлении составляют:

  • нижний – 1,5%;
  • верхний – 9,5%.нижний – 2%;
  • верхний – 46%.

Пропанобутановые смеси в жидком виде разрушают резину, поэтому необходимо тщательно следить за резиновыми изделиями, применяемыми в газопламенной аппаратуре, и в случае необходимости производить их своевременную замену.

Наибольшая опасность разрушения резины существует зимой, вследствие большей вероятности попадания жидкой фазы пропанобутановой смеси в рукава.


Ацетилен — это горючий газ, без цвета, вкуса, с резким специфическим чесночным запахом, он легче воздуха. Его плотность по отношению к воздуху 0,9.

При нормальном атмосферном давлении (760 мм ртутного столба) и температуре плюс 20 град. С 1 м куб. имеет массу 1,09 кг, воздух 1,20 кг.

При нормальном атмосферном давлении и температуре от — 82,4 градуса до — 84 градусов С ацетилен переходит из газообразного в жидкое состояние, а при температуре минус 85 град. С затвердевает.

Ацетилен — единственный широко применяемый в промышленности газ, горение и взрыв которого возможны в отсутствии кислорода или других окислителей.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии, получая его в передвижных или стационарных ацетиленовых генераторах, либо растворённым в ацетиленовых баллонах. Растворенный ацетилен по ГОСТ 5457-75 представляет собой раствор газообразного ацетилена в ацетоне, распределённый в пористом наполнителе под давлением до 1,9 МПА (19 кгс/см2). В качестве пористых наполнителей используются насыпные – берёзовый активированный уголь (БАЦ) и литые пористые массы.

Основным сырьём для получения ацетилена является карбид кальция. Это твёрдое вещество тёмно-серого или коричневатого цвета. Ацетилен получается в результате разложения (гидролиза) кусков, карбида кальция водой. Выход ацетилена на 1 кг карбида кальция составляет 250 дм куб. Для разложения 1 кг карбида кальция требуется от 5 до 20 дм куб. воды. Карбид кальция транспортируется в герметически закрытых барабанах. Масса карбида в одном барабане от 50 до 130 кг.

При нормальном атмосферном давлении ацетилен с воздухом и кислородом образуют взрывоопасные смеси. Пределы взрывоопасности ацетилена с воздухом:

  • нижний – 2,2%;
  • верхний – 81%.

Пределы взрывоопасности ацетилена с кислородом:

  • нижний – 2,3%;
  • верхний – 93%.

Наиболее взрывоопасные концентрации ацетилена с воздухом и кислородом составляют:

  • нижний – 7%;
  • верхний – 13%.

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

O2   2F2  →  2OF2

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

S O2 → SO2

  Si O2 → SiO2

1.3.Фосфоргорит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

4P      3O2  →   2P2O3

Но чаще фосфор сгорает до оксида фосфора (V):

4P      5O2  →   2P2O5

1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

    N2  O2→  2NO

1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

2Ca       O2 → 2CaO

Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

    2Na O2→  Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

    K O2→  KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn O2→  2ZnO

Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe O2→  2FeO

4Fe 3O2→  2Fe2O3

3Fe 2O2→  Fe3O4

1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

C     O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C     O2  →  2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

4FeS 7O2→  2Fe2O3 4SO2

Al4C3 6O2→  2Al2O3 3CO2

Ca3P2 4O2→  3CaO P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

2H2S 3O2→  2H2O 2SO2

Аммиакгорит с образованием простого вещества, азота:

4NH3 3O2→  2N2 6H2O

Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 5O2→  4NO 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

CS2 3O2→  CO2 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

2CO O2→  2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например, кислород окисляет гидроксид железа (II):

4Fe(OH)2 O2 2H2O → 4Fe(OH)3

Кислород окисляет азотистую кислоту:

2HNO2 O2 → 2HNO3

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 2O2→  CO2 2H2O

2CH4 3O2→  2CO 4H2O

CH4 O2→  C  2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

2CH2=CH2 O2 → 2CH3-CH=O

Оцените статью
Кислород
Добавить комментарий