Уравнение горения ацетилена на воздухе

Содержание
  1. Получение ацетилена
  2. История получения ацетилена
  3. Физические свойства ацетилена
  4. Коэффициенты перевода объема и массы С2Н2 при Т=15°С и Р=0,1 МПа
  5. Формула ацетилена
  6. Ацетилен — газ с самой высокой температурой пламени!
  7. Похожие вопросы
  8. Преимущества
  9. Химические и физические свойства
  10. Состав
  11. Технология и режимы сварки
  12. Заключение
  13. Применение ацетилена при сварке
  14. Получение и применение ацетилена
  15. Горение ацетилена
  16. Получение ацетилена пиролизным способом
  17. В промышленности
  18. Получение пиролизом
  19. Карбидный метод
  20. Как синтезировался ацетилен
  21. Хранение и транспортировка ацетилена
  22. С2Н2 ацетилен. Свойства ацетилена. Получение ацетилена.
  23. Реакция ацетилена с ацетоном.
  24. Реакция сгорания ацетилена.
  25. Полное сгорание ацетилена.
  26. Разложение ацетилена.
  27. Выбор параметров режима
  28. Взрывоопасность ацетилена и безопасность при обращении с ним
  29. Химические свойства ацетилена
  30. Способы получения
  31. Что собой представляет ацетилен?
  32. Газ в баллоне
  33. Электрический крекинг
  34. Пиролиз окислительный
  35. Сфера и область применения ацетилена. Где применяется ацетилен.

Получение ацетилена

Получение ацетилена производится двумя основными способами:

  • в результате реакции карбида кальция и воды
  • из метана путем сжигания в смеси с кислородом в специальных реакторах при температуре 1300-1500°C

А вот какой способ сейчас более распространён можно узнать из статьи о получении ацетилена.

История получения ацетилена

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

Дэви получил карбид калия К2С2 и обработал его водой.

В статье о получении карбида кальция мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Физические свойства ацетилена

Физические свойства ацетилена представлены в таблицах ниже.

Коэффициенты перевода объема и массы С2Н2 при Т=15°С и Р=0,1 МПа

Благодаря информации в таблице можно дать ответы на часто задаваемые вопросы:

  • Сколько ацетилена в одном баллоне? Ответ: в 40 л баллоне 5 кг или 4,545 м 3 ацетилена
  • Сколько весит баллон ацетилена? Ответ:58,5 кг — масса пустого баллона из углеродистой стали согласно ГОСТ 949; 18-20 кг — масса пористого материала, пропитанного ацетоном; 5,0 — кг масса С2Н2 в баллоне; Итого: 58,5 + 20,0 + 5,0= 83,5 кг вес баллона с ацетиленом.
  • Сколько м 3 ацетилена в баллоне Ответ: 4,545 м 3

Формула ацетилена

Уравнение горения ацетилена на воздухе

Строение молекулы ацетилена

Ацетилен имеет простую формулу — С2Н2. Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.

Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.

Ацетилен — газ с самой высокой температурой пламени!

При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м 3 . Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.

Похожие вопросы

  • Все категории
  • экономические 43,299
  • гуманитарные 33,630
  • юридические 17,900
  • школьный раздел 607,256
  • разное 16,836

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Преимущества

Газ является непредельным углеводородом, который обладает тройной связью атомов углерода. Формула ацетилена – С2Н2. При этом структурная формула ацетилена выглядит следующим образом Н-С=С-Н, так как связь идет между атомами углерода.

Химические и физические свойства

В нормальных условиях газ является бесцветным. Он легче воздуха. В техническом ацетилене имеются добавки, которые придают ему резкий запах, но в чистом виде он ни чем не пахнет. Лучше всего газ растворяется в ацетоне, но в воде он мало растворим. Температура кипения достигает -83,6 градусов Цельсия.

Газ требует очень аккуратного обращения. Баллон может взорваться от обыкновенного удара при падении или при нагреве около 500 градусов Цельсия. Воспламениться струя может даже от статического электричества от пальца человеческой руки. Молярная масса ацетилена составляет 26 г/моль. Температура горения ацетилена в ядре пламени может составлять более 2600 градусов Цельсия.

Химические свойства ацетилена показывают, в какие реакции может вступать субстанция с другими веществами. В присутствии катализаторов, в частности солей ртути, газ образует уксусный альдегид. Благодаря наличию тройной связи, молекулы вещества имеют большой запас энергии. Это обеспечивает ей высокую теплоту сгорания, которая составляет 14 000 ккал/м3. Если при сгорании добавить струю кислорода, то температура пламени достигнет более 3100 градусов Цельсия. Газ может полимеризироваться в такое вещество как бензол и прочие органические соединения, к примеру, винилацетилен или полиацетилен. Полимеризация в бензол происходит при температуре в 500 градусов Цельсия и при наличии графита. Если в качестве катализатора использоваться трикарбонил никеля, то данная реакция может пройти при температуре в 65 градусов Целься. Ацетилен обладает очень сильными кислотными свойствами. Атомы водорода могут легко отщепиться в качестве протонов. В эфирном растворе металмагнийбромида данный газ вытесняет метан. В сочетании с солями одновалентной меди и серебра ацетилен образует взрывчатый нерастворимый осадок.

Состав

Горение ацетилена и прочие его практические свойства во многом зависят от состава. Даже небольшие отклонения от нормы могут привести к тому, что газ поменяет свои характеристики. Поэтому, выделяют несколько основных сортов, отличающихся друг от друга по своему составу.

Состав ацетилена газообразного технического:

Растворенное вещество первого сорта марки Б должно обладать следующим составом:

Растворенное вещество второго сорта марки Б должно обладать следующим составом:

Растворенное вещество марки А должно обладать следующим составом:

Технология и режимы сварки

Перед началом сварки нужно подобрать баллон с ацетиленом и понять саму его конструкцию.

Уравнение горения ацетилена на воздухе

Конструкция баллона с ацетиленом

Потом подбирается горелка требуемого размера от 0 до 5. Толщина этого инструмента определяет расход газа, а также ширину образуемого шва. Чтобы проверить готовность изделия к работе, ее нужно продуть ацетиленом до тех пор, чтобы почувствовать его запах.

Поджог газа осуществляется еще до добавления кислорода. После загорания можно добавить понемногу струю кислорода, пока не образуется устойчивое пламя. Выходное давление основного газа должно быть до 4 атмосфер, а дополнительного – до 2 атмосфер. Затем подбирается мощность пламени согласно толщине свариваемого металла.

Заранее очищенные заготовки предварительно прогреваются пламенем горелки до нужной температуры. После этого добавляется сварочная проволока, которая вместе с основным металлом образует сварочную ванну. Процесс сварки может проводиться как правым, так и левым способом. После окончания процедуры горение ацетилена поможет постепенному охлаждению шва с подогревом.

Заключение

Разбираясь, для чего нужен ацетилен в сварочной области, в первую очередь нужно думать о безопасности. Отличные практические качества и низкая стоимость газа не позволяют отказаться от него полностью из-за взрывоопасности. Любой специалист может оценить все преимущества работы с ним, но сложности хранения затрудняют его применение в домашних условиях.

Применение ацетилена при сварке

Ацетилен – основной горючий газ, используемый при газовой сварке, а также широко применяется для газовой резки (кислородной резки). Температура ацетилено-кислородного пламени может достигать 3300°C. Благодаря этому ацетилен по сравнению с более доступными горючими газами (пропан-бутаном, природным газом и др.) обеспечивает более высокое качество и производительность сварки.

Снабжение постов ацетиленом для газовой сварки и резки может осуществляться

  • от баллонов с ацетиленом и
  • от ацетиленового генератора.

Для хранения ацетилена обычно используются стандартные баллоны емкостью 40 л, окрашенные в белый цвет, с надписью «Ацетилен» красного цвета (ПБ 10-115-96, ГОСТ 949-73). Согласно ГОСТ 5457-75 для газопламенной обработки металлов применяется технический ацетилен растворенный марки Б и газообразный.

Таблица. Характеристики марок технического ацетилена (ГОСТ 5457-75), используемого при сварке и резке.

Баллоны заполнены пористой массой, пропитанной ацетоном. Ацетилен хорошо растворяется а ацетоне: при нормальной температуре и давлении в 1 л ацетона растворяется 23 л ацетилена (в 1 л бензина растворяется 5,7 л ацетилена, в 1 л воды – 1,15 л ацетилена). Пористая масса выполняет следующие функции:

  • повышает безопасность при работе с баллоном – за счет пористой массы общий объем ацетилена разделен на отдельные ячейки; таким образом, вероятность распространения общего фронта горения и взрыва значительно уменьшается;
  • позволяет повысить количество ацетилена в баллоне, ускорить процесс его растворения при заполнении баллона и выделении при отборе газа – поскольку при использовании пористой массы, пропитанной ацетоном, обеспечивается большая поверхность взаимного контакта между газом и ацетоном.
Про кислород:  Переименование контейнера криогенного хранилища и колб с вакуумной изоляцией серии L для холодного хранения жидкого азота (сокращенно LB2K2, L2K2, L2K5, L2K12, L2K25, L2K35, L2K50, L2K100)

В качестве пористых масс могут применяться активированный уголь, пемза, волокнистый асбест.

Таблица. Допустимое давление газа в баллоне в зависимости от температуры (при номинальном давлении 1,9 МПа / +20°С) (ГОСТ 5457-75)

Таблица. Остаточное давление газа в баллоне, поступающем от потребителя (ГОСТ 5457-75)

40-литровые баллоны с максимальным давлением газа 1,9 МПа при температуре 20°С обычно заполняют 5–5,8 кг ацетилена (4,6–5,3 м3 газа при температуре 20°С и давлении 760 мм рт. ст.). Масса ацетилена в баллоне определяется по разности масс баллона до и после наполнения газом. Объем ацетилена равен отношению его массы и плотности. Так, объем 5,5 кг ацетилена при температуре 20°С и давлении 760 мм рт. ст. составляет 5,5/1,09 = 5,05 м3.

Таблица. Сравнительные характеристики ацетилена, пропана и метилацетилен-алленовой фракции (МАФ)

Получение и применение ацетилена

Прежде чем приступить к объяснению, где применяется ацетилен, давайте рассмотрим, как его получить.

Получение ацетилена производят двумя основными способами:

На данный момент способ получения ацетилена из карбида кальция используется редко, поскольку он довольно громоздкий, дорогой и требующий затрат большого количества электроэнергии.

Поэтому на смену ему пришел способ получения ацетилена из природного газа (метана) термоокислительным пиролизом метана с кислородом (так называемый пиролизный ацетилен).

Горение ацетилена

Для полного сгорания 1 м 3 ацетилена по вышеуказанной реакции теоретически требуется 2,5 м 3 кислорода или = 11,905 м 3 воздуха. При этом выделяется тепло Q1 ? 312 ккал/моль. Высшая теплотворная способность 1 м 3 С2Н2 при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет QВ = 14000 ккал/м 3 (58660 кДж/м 3 ), что соответствует расчетной:

312?1,1709?1000/26,036 = 14000 ккал/м 3

Низшая теплотворная способность при тех же условиях может быть принята QH = 13500 ккал/м 3 (55890 кДж/м 3 ).

Практически для горения в горелках при восстановительном пламени в горелку подается не 2,5 м 3 кислорода на 1 м 3 ацетилена, а всего лишь от 1 до 1,2 м 3 , что примерно соответствует неполному сгоранию по реакции:

где Q2 ? 60 ккал/моль или 2300 ккал/кгС2H2. Остальные 1,5-1,3 м 3 кислорода поступают в пламя из окружающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:

Реакция неполного горения ацетилена протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад С2Н2 на его составляющие по реакции:

где Q4?54 ккал/моль или 2070 ккал/кг С2H2.

Таким образом, общая полезная теплопроизводительность пламени применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде С2Н2, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370?1,1709 ? 5120 ккал/м 3 .

При содержании С2Н2 в смеси около 45% (т. е. при отношении кислорода к ацетилену, примерно равном 1,25) достигается максимальная температура горения ацетилена, которая составляет 3200°С.

Следовательно, температура пламени изменяется в зависимости от состава смеси.

При содержании 27% С2Н2 достигается максимальная скорость воспламенения ацетилено-кислородной смеси, которая равна 13,5 м/сек.

Следовательно, в зависимости от состава смеси также изменяется и скорость воспламенения.

Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.

Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1?100/(1+11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только углекислый газ (СО2) и вода (H2О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.

С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% С2Н2 — процесс горения прекращается или не возникает.

Получение ацетилена пиролизным способом

Пиролизный ацетилен получают путем сжигания метана в смеси с кислородом в реакторах при температуре 1300-1500°C. В результате чего получается смесь, которая содержит:

При помощи растворителя (диметилформамида) из нее извлекается ацетилен концентрации 99,0-99,2%. Оставшаяся часть пиролизных газов используется для производства аммиака и других продуктов.

Также ацетилен получают путем разложения жидких горючих (нефть, керосин) действием электродугового разряда, который называется электропиролизом.

Пиролизный и электропиролизный ацетилена по своим свойствам является идентичным ацетилену, получаемому из карбида кальция, но дешевле на 30-40%.

В лаборатории, а также в газосварочном оборудовании, ацетилен получают действием воды на карбид кальция (Ф. Вёлер, 1862 год):

а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:

В промышленности

В промышленности ацетилен получают гидролизом карбида кальция и пиролизом углеводородного сырья — метана или пропана с бутаном. В последнем случае ацетилен получают совместно с этиленом и примесями других углеводородов. Карбидный метод позволяет получать очень чистый ацетилен, но требует высокого расхода электроэнергии. Пиролиз существенно менее энергозатратен, т.к. для нагрева реактора используется сгорание того же рабочего газа во внешнем контуре, но в газовом потоке продуктов концентрация самого ацетилена низка. Выделение и концентрирование индивидуального ацетилена в таком случае представляет сложную задачу. Экономические оценки обоих методов многочисленны, но противоречивы.

Получение пиролизом

Метан превращают в ацетилен и водород в электродуговых печах (температура 2000—3000 °С, напряжение между электродами 1000 В). Метан при этом разогревается до 1600 °С. Расход электроэнергии составляет около 13000 кВт•ч на 1 тонну ацетилена, что относительно много (примерно равно затрачиваемой энергии по карбидному методу) и потому является недостатком процесса. Выход ацетилена составляет 50 %.

Регенеративный пиролиз

Иное название — Вульф-процесс. Сначала разогревают насадку печи путём сжигания метана при 1350—1400 °С. Далее через разогретую насадку пропускают метан. Время пребывания метана в зоне реакции очень мало и составляет доли секунды. Процесс реализован в промышленности, но экономически оказался не таким перспективным, как считалось на стадии проектирования.

Окислительный пиролиз

Метан смешивают с кислородом. Часть сырья сжигают, а образующееся тепло расходуют на нагрев остатка сырья до 1600 °С. Выход ацетилена составляет 30—32 %. Метод имеет преимущества — непрерывный характер процесса и низкие энергозатраты. Кроме того, с ацетиленом образуется еще и синтез-газ. Этот процесс (Заксе-процесс или BASF-процесс) получил наиболее широкое внедрение.

Гомогенный пиролиз

Является разновидностью окислительного пиролиза. Часть сырья сжигают с кислородом в топке печи, газ нагревается до 2000 °С. Затем в среднюю часть печи вводят остаток сырья, предварительно нагретый до 600 °С. Образуется ацетилен. Метод характеризуется большей безопасностью и надёжностью работы печи.

Пиролиз в струе низкотемпературной плазмы

Процесс разрабатывается с 1970-х годов, но, несмотря на перспективность, пока не внедрён в промышленности. Сущность процесса состоит в нагреве метана ионизированным газом. Преимущество метода заключается в относительно низких энергозатратах (5000—7000 кВт•ч) и высоких выходах ацетилена (87 % в аргоновой плазме и 73 % в водородной).

Карбидный метод

Этот способ известен с XIX века, но не потерял своего значения до настоящего времени. Сначала получают карбид кальция, сплавляя оксид кальция и кокс в электропечах при 2500—3000 °С:

Известь получают из карбоната кальция:

Далее карбид кальция обрабатывают водой:

Получаемый ацетилен имеет высокую степень чистоты 99,9 %. Основным недостатком процесса является высокий расход электроэнергии: 10000—11000 кВт•ч на 1 тонну ацетилена.

Как синтезировался ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К2С2 + 2Н2О=С2Н2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С2Н3ацетилом. На латыни acetum – уксус; молекула уксусной кислоты (С2Н3О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С2Н3 – Н = С2Н2. Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС2 + СО. Это произошло в конце XIX века. Тогда ацетилен стали использовать для освещения. В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени — от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому). Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах. В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина, арсина.

Про кислород:  Взаимодействие неметаллов с кислородом

. При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода. Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи. Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь. Для полного сгорания нового газа необходимо 2,5 объема кислорода. При этом образуются два объема углекислого газа и вода, которые являются единственными продуктами горения. Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода. Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.

Хранение и транспортировка ацетилена

Ацетилен выпускают по ГОСТ 5457 растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных баллонах по ГОСТ 949, заполненных пористой, пропитанной ацетоном массой. Ацетилен, растворенный в ацетоне не склонен к взрывчатому распаду.

Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части.

Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см 2 ), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см 2 ). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг С2Н2 по массе (4,6-5,3 м 3 газа при 20°С и 760 мм рт. ст.).

Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом:

Другие требования техники безопасности можно узнать из статьи о классе опасности и мерах безопасности при работе с ацетиленом

С2Н2 ацетилен. Свойства ацетилена. Получение ацетилена.

Химически чистый ацетилен является бесцветным газом со слабым эфирным запахом и слегка сладковатым вкусом. Технический ацетилен, применяемый для кислородной резки, вследствие присутствия в нем некоторых примесей (сероводорода, аммиака, фосфористого водорода и др.) отличается резким неприятным запахом и является вредным для организма человека.

При давлении свыше 2 кг/см 2 ацетилен в больших объемах приобретает свойства взрывчатого газа и при соприкосновении с накаленной поверхностью или от электрической искры взрывается, при этом температура достигает 3000°С, а давление увеличивается более чем в 10 раз.

С кислородом и воздухом ацетилен образует взрывоопасные смеси, которые от огня взрываются. Ацетилено — воздушная смесь является взрывоопасной при наличии от 2,3 до 81% ацетилена в воздухе. Еще более опасной является ацетилено — кислородная смесь, которая от огня взрывается при содержании в кислороде от 2,3 до 93% ацетилена, при этом скорость распространения взрывной волны достигает 3000 м/сек, поэтому особенно тщательно нужно следить за плотностью всех ацетиленовых приборов, трубопроводов и пр.

Взрывчатость ацетилена сильно понижается при размещении его в капиллярных (очень тонких) каналах. Этим свойством ацетилена пользуются при наполнении баллонов под давлением — ацетиленовые баллоны заполняют специальной пористой массой.

Реакция ацетилена с ацетоном.

Ацетилен хорошо растворяется во многих жидкостях, особенно в ацетоне. В одном объеме ацетона при 15°С и нормальном давлении растворяется 23 объема ацетилена, а при повышенном давлении — пропорционально больше. Это свойство ацетилена также используют при наполнении баллонов. Растворимость ацетилена в ацетоне в значительной степени зависит от температуры: с повышением температуры растворимость уменьшается, а с понижением резко возрастает.

Способность растворенного ацетилена к взрыву понижается.

Реакция сгорания ацетилена.

Ацетилен при сгорании в смеси с чистым кислородом дает пламя с температурой 3050 — 3150°С, а при сгорании в смеси с воздухом 2350°С.

Полное сгорание ацетилена.

Для полного сгорания 1 м 3 ацетилена требуется 2,5 м 3 кислорода или 12,5 м 3 воздуха.

Ацетилен легче кислорода и воздуха. Удельный вес ацетилена при 0°С и 760 мм рт. ст. 1,17 кг/м 3 .

При длительном взаимодействии с красной медью и серебром ацетилен дает соединения, которые при нагревании или при сильном ударе взрываются. Поэтому при изготовлении ацетиленовой аппаратуры и арматуры запрещено применение серебряных припоев и красной меди в чистом виде. Допускаются лишь технические медные сплавы, содержащие не более 70% меди.

Основным промышленным способом получения ацетилена является разложение карбида кальция водой. Карбид кальция представляет собой химическое соединение кальция с углеродом (СаС2) и является твердым веществом темно-серого или серого цвета.

Технический карбид кальция получается сплавлением негашеной извести с углем (коксом или антрацитом). Шихта, состоящая из смеси угля и извести в определенной пропорции, погружается в электрическую дуговую печь, где под влиянием тепла электрической дуги расплавляется с образованием карбида кальция.

Расплавленный карбид выливают из печи в формы — изложницы, в которых он застывает. Застывший карбид кальция затем дробят, сортируют на куски определенных размеров и упаковывают в специальные барабаны для хранения и транспортировки. Барабаны для упаковки карбида кальция делают из листового железа толщиной не менее 0,5—0,6 мм с герметически закрывающейся крышкой. На цилиндрической поверхности барабанов для повышения их прочности накатаны гофры. Барабан вмещает 50— 130 кг карбида кальция.

Карбидные барабаны следует открывать очень осторожно , так как по тем или иным причинам внутрь барабана может проникнуть влага и образоваться взрывоопасная ацетилено-воздушная смесь. Лучше всего покрыть крышку барабана слоем тавота и снимать ее специальным ножом. Ни в коем случае нельзя прибегать к ударам молотка.

Категорически запрещается при раскупорке карбидных барабанов применять пламя или же вырубать крышку барабана зубилом.

Разложение ацетилена.

При действии воды карбид кальция разлагается, образуя ацетилен и гашеную известь. Реакция протекает по уравнению

и сопровождается значительным выделением тепла.

Карбид кальция при соприкосновении с атмосферным воздухом, содержащим пары воды, разлагается с выделением ацетилена. Из 1 кг карбида кальция обычно получается от 230 до 300 л ацетилена.

Для разложения 1 кг карбида кальция теоретически требуется 0,56 л воды. Реакция разложения карбида протекает с выделением большого количества тепла, поэтому недостаток воды может привести к значительному перегреву и даже воспламенению ацетилена в месте разложения карбида. Во избежание этого процесс разложения карбида ведут всегда с избыточным количеством воды, которая используется для охлаждения. Практически на 1 кг карбида кальция берется от 5 до 20 л воды.

Статья оказалась полезной?! Поделись с друзьями в социальных сетях.

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.

Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм 3 /час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Про кислород:  OOO "ПВП 'КВАРЦ', Стройматериалы, инструменты, Щелково - телефон, адрес, контакты, отзывы

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Взрывоопасность ацетилена и безопасность при обращении с ним

Ацетилен обладает взрывоопасными свойствами.

Поэтому обращение с ацетиленом требует строгого соблюдения правил техники безопасности.

Ацетилен горит и взрывается даже в отсутствии кислорода и других окислителей.

Смеси ацетилена с воздухом взрывоопасны в очень широком диапазоне концентраций.

Струя ацетилена, выпущенная на открытый воздух, может загореться от малейшей искры, в том числе от разряда статического электричества с пальца руки.

Взрываемость ацетилена зависит от множества факторов: давления, температуры, чистоты ацетилена, содержания в нем влаги, наличия катализаторов и пр. веществ и ряда других причин.

Температура самовоспламенения ацетилена при нормальном – атмосферном давлении колеблется в пределах 500-600 °C. При повышении давления существенно уменьшается температура самовоспламенения ацетилена. Так, при давлении 2 кгс/см2 (0,2 МПа, 1,935682 атм.) температура самовоспламенения ацетилена равна 630 °C. А при давлении 22 кгс/см2 (2,2 МПа, 21,292502 атм.) температура самовоспламенения ацетилена равна 350 °С.

Присутствие в ацетилене частиц различных веществ увеличивают поверхность его контакта и тем самым снижает температуру самовоспламенения при атмосферном давлении. Например, активированный уголь снижает температуру самовоспламенения ацетилена до 400 °С, гидрат оксида железа (ржавчина) – до 280-300 °С, железная стружка – до 520 °С, латунная стружка – до 500-520 °С, карбид кальция – до 500 °С, оксид алюминия – до 490 °С, медная стружка – 460 °С, оксид железа – 280 °С, оксид меди – до 250 °С.

Взрывоопасность ацетилена уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При определенных условиях ацетилен реагирует с медью, серебром и ртутью образуя взрывоопасные соединения. Поэтому при изготовлении ацетиленового оборудования (например, вентилей баллонов) запрещается применять сплавы, содержащие более 70 % Cu.

Для хранения и перевозки ацетилена используются специальные стальные баллоны белого цвета (с красной надписью «А»), заполненные инертным пористым материалом (например, древесным углём). При этом ацетилен хранится и перевозится в указанных баллонах в виде раствора ацетилена в ацетоне под давлением 1,5-2,5 МПа.

Уравнение горения ацетилена на воздухе

Уравнение горения ацетилена на воздухе

Уравнение горения ацетилена на воздухе

Уравнение горения ацетилена на воздухе

как получить ацетилен реакция ацетилен этен 1 2 вещество кислород водород связь является углекислый газ бромная вода уравнение реакции масса объем полное сгорание моль молекула смесь превращение горение получение ацетилена напишите уравнение реакций ацетилен

Химические свойства ацетилена

Исходя из тройной связи ацетилена, для него будут характерны реакции присоединения и реакции полимеризации. Атомы водорода в молекуле ацетилена могут замещаться другими атомами или группами. Поэтому можно сказать, что ацетилен проявляет кислотные свойства. Разберем химические свойства ацетилена на конкретных реакциях.

  • Димеризация. При этой реакции две молекулы ацетилена объединяются в одну. Необходим катализатор — соль одновалентной меди.
  • Тримеризация. В этой реакции три молекулы ацетилена образуют бензол. Необходим нагрев до 70 °C, давление и катализатор.
  • Тетрамеризация. В результате реакции получается восьмичленный цикл — циклооктатетраен. Для этой реакции также требуется небольшой нагрев, давление и соответствующий катализатор. Обычно это комплексные соединения двухвалентного никеля.

Это далеко не все химические свойства ацетилена.

Способы получения

В промышленности ацетилен часто получают действием воды на карбид кальция. Сейчас широко применяются методы получения ацетилена из природного газа – метана: электрокрекинг (струю метана пропускают между электродами при температуре 1600°С и быстро охлаждают, чтобы предотвратить разложение ацетилена); термоокислительный крекинг (неполное окисление), где в реакции используют теплоту частичного сгорания ацетилена.

Применение ацетилена при газовой сварке обусловлено тем, что у него самая большая температуры горения. Но он также нашел свое применение в химической отрасли для получения пластмасс, синтетического каучука, уксусной кислоты и растворителей. Более подробный ответ по данному вопросу можно найти в статье о применении ацетилена.

Что собой представляет ацетилен?

Сегодня чаще всего ацетилен используется при газовой и автогенной сварке. Сварку совершают с помощью горячего пламени, образованного при работе ацетилено-кислородной горелки. Температура такого пламени может достигать 3000 градусов Цельсия и плавить даже листы стали. Такую сварку применяют и для пластмасс, в том числе и при ремонте автомобильных пластмассовых бамперов.

Огневая чистка ацетиленом позволяет получить металлическую поверхность без грязи и коррозии. Такой способ отлично очищает металл перед последующей обработкой. Пайка твердым припоем, при которой также используется данное соединение, позволяет соединять между собой материалы различной структуры.

Газ в баллоне

Для хранения и транспортировки ацетилена применяют газовые баллоны. Для изготовления этого устройства применяют бесшовную трубу, которую производят на основании ГОСТ 949-73. В нижней части корпуса устанавливают специальную опору, которая позволяет его устанавливать в вертикальное положение. В верхней части баллона устанавливают вентиль, через который выполняют заправку/отдачу газа. Эти вентили выпускают под маркой ВБА-1 или BA-I. Их применение допустимо только на баллонах предназначенном для хранения этого газа.

Уравнение горения ацетилена на воздухе

Ацетилен в баллонах

На поверхности баллона должны быть выбиты следующие данные:

Товарный знак производителя, дата производства, параметры давления и некоторые другие, которые характеризуют это изделие.

На поверхность баллонов наносят краску белого цвета. Кроме этого, в обязательном порядке должны быть нанесена надпись АЦЕТИЛЕН. При этом высота шрифта не должна быть менее 6 см.

Баллон заполняют пористым наполнителем. Его задача более равномерное распределение газа внутри баллон, другая задача заключается в предохранении газа от распада.

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

Электрический крекинг

Уравнение горения ацетилена на воздухе

Технологическая схема крекинга

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Уравнение горения ацетилена на воздухе

Технологическая схема процесса окислительного пиролиза

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Сфера и область применения ацетилена. Где применяется ацетилен.

Открыт несколько веков назад – ацетилен – остается одним из самых популярных органических соединений и сегодня. В быту его начали использовать еще в 20 веке, а сегодня этот углеводород востребован в разных отраслях промышленности и даже в медицине.

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Оцените статью
Кислород