Возрастные особенности показателей церебральной оксигенации у детей. — НЦЗД

Возрастные особенности показателей церебральной оксигенации у детей. - НЦЗД Кислород

Длительная домашняя кислородотерапия у детей. учебно-методическое пособие для врачей и родителей в вопросах и ответах

14. Какие правила техники безопасностипри проведении кислородотерапии необходимо соблюдать?

Кислород — это маслоопасный и огнеопасный газ без цвета и запаха. Наличие кислорода внутри помещения может увеличить риск возгорания. Сам кислород не воспламеняется, но может поддерживать и ускорять горение, а также заставлять вещества легко зажигаться. Поэтому при использовании домашней кислородотерапии следует придерживаться следующих правил противопожарной безопасности.

Нельзя эксплуатировать кислородное оборудование вблизи огня или открытого пламени, в том числе свечей на праздничном торте.

При использовании кислорода в помещении нельзя курить. Это правило касается в том числе электронных сигарет, которые, помимо этого, нельзя заряжать вблизи кислородного оборудования.

Нельзя использовать аэрозоли, фен в той же комнате, что и кислородное оборудование.

Нельзя использовать жир или масло для смазки или контакта с кислородными баллонами, нельзя пользоваться оборудованием жирными руками. При пользовании кислородным оборудованием руки должны быть чистыми и сухими.

Кислородное оборудование не должно использоваться и храниться в пределах 1,5 м от электрических приборов, например телевизоров, фенов, кондиционеров или нагревательных приборов без открытого пламени.

Нельзя вешать одежду поверх концентратора или кислородных баллонов.

Не позволяйте концентратору накапливать кислород в замкнутом пространстве (например, когда не требуется проведение оксигенотерапии).

Никогда не оставляйте концентратор кислорода работающим, если не проводите оксигенотерапию.

Необходимо хранить кислородные баллоны вдали от нагревателей, радиаторов и солнечных лучей. Нельзя хранить кислородные баллоны в одном месте с краской, бензином, парафином или любыми другими легковоспламеняющимися материалами.

Не позволяйте другим детям играть с кислородным оборудованием, не оставляйте детей без присмотра в помещениях, где оно находится.

15. Что делать, если дома отключили электричество?

Рекомендуется подключать концентратор кислорода через источник бесперебойного питания. Тогда в случае отключения электричества, источник бесперебойного питания, во-первых, поддержит работу концентратора на короткое время, а во-вторых, подаст звуковой сигнал о проблеме.

Если дома отключили электричество или с концентратором возникли какие-либо проблемы, необходимо начать кислородотерапию с помощью резервного баллона с кислородом, а затем позвонить в компанию, осуществляющую сервисное обслуживание концентратора, для получения консультации.

В случае если дома нет резервного баллона, необходимо обратиться в службу скорой медицинской помощи, с обязательным указанием того, что ребенок нуждается в дополнительном кислороде.

16. Как перевозить кислородное оборудование?

При перевозке концентратора кислорода или баллона они должны быть надежно закреплены внутри транспортного средства. Для этого необходимо выбрать такое положение оборудования, которое препятствует случайному смещению канюлей или трубок во время езды, а также обеспечивает надежное крепление баллонов в случае экстренного торможения или дорожно-транспортного происшествия. Не рекомендуется перевозить кислородные концентраторы и баллоны в багажнике, так как они могут быть повреждены в течение поездки [14].

17. Что выбрать: маску или носовые канюли?

При проведении длительной домашней кислородотерапии можно использовать доставку кислорода в организм ребенка посредством лицевой маски или носовых канюлей, которые имеют свои плюсы и минусы. Поэтому данный выбор основывается на возрасте ребенка, его общем состоянии, а также на том, какая скорость потока кислорода необходима ребенку в настоящее время.

18. Когда и как правильно использовать носовые канюли?

В домашних условиях чаще всего используются носовые канюли, представляющие собой трубку длиной от 1,8 до 5 м с двумя короткими штуцерами (длиной <1 см), которые вводятся в ноздри. Кислород поступает из канюль в носоглотку, которая работает как анатомический резервуар. Применение носовых канюль затруднено при нарушении дыхания через нос.

Носовые канюли используются у новорожденных, грудных детей и детей младшего возраста при скорости потока кислорода <2, у старших детей и подростков поток кислорода через носовые канюли может составлять до 4 л/мин, у взрослых — до 5-6 л/мин. При использовании скоростей потока кислорода выше указанных кислород оказывает вредное воздействие на слизистые оболочки носа и носовых ходов [1].

Носовые канюли удобны в использовании, с их помощью легко осуществлять кислородотерапию во время кормления. Рекомендуется менять носовые канюли каждые 7 дней. Пластиковые трубочки должны быть мягкими и эластичными, чтобы избежать болезненного воздействия на кожу вокруг носа. Если в канюлях скапливается слизь или они становятся твердыми, непрозрачными, их следует заменить.

Не рекомендуется использовать кремы на основе вазелина для кожи вокруг носа, так как при контакте с кислородом они могут вызывать раздражение кожи (болезненность). При необходимости можно использовать кремы на водной основе.

Носовые канюли необходимо подбирать в зависимости от возраста ребенка. Существуют канюли для недоношенных младенцев, для недоношенных новорожденных с массой тела >1400 г, для доношенных новорожденных и младенцев до 3 м, для младенцев от 3 до 12 м, а также педиатрические канюли для детей старше 1 года.

Носовые канюли должны быть надежно закреплены на лице ребенка, чтобы трубочки не перемещались. Для этого используются гипоаллергенные лейкопластыри. Если ребенок способен самостоятельно вытащить носовые канюли, необходимо закрепить их лейкопластырем ближе к носу, а не на середине щек или вблизи ушей.

По мере взросления ребенок становится более активным, он больше двигается во время сна, поэтому нужно быть уверенным, что трубочки не обернутся вокруг ребенка. С этой целью рекомендуется пропустить трубки сквозь одежду сбоку так, чтобы они вышли сквозь штанину в нижнюю часть кроватки.

Если ребенок специально или непроизвольно снимает канюли в ночное время, когда вы не контролируете его длительное время, для подстраховки можно использовать нарукавники. Их можно сшить из ткани, снабдив липучками.

Для того чтобы ребенок мог отдаляться от концентратора дальше, чем длина канюль, можно использовать удлинители — специальные пластмассовые шланги. Вместе с тем необходимо помнить, что при увеличении длины шлангов снижается концентрация кислорода в смеси.

19. Когда и как правильно использовать кислородную лицевую маску?

Кислород поступает в маску через трубку небольшого диаметра. Боковые отверстия с двух сторон маски способствуют поступлению воздуха извне и удалению выдыхаемого газа. Размер маски индивидуален.

Маска предпочтительна для больных, которые дышат ртом, а также у пациентов с повышенной чувствительностью слизистой оболочки носа.

Использование кислородной маски не рекомендуется, когда требуется точная концентрация кислорода. К недостаткам использования маски относятся трудности при кормлении. Кроме того, при потоке кислорода <2 л/мин у детей и <6 л/мин у взрослых при использовании маски возможно накопление углекислого газа [1].

Маски после каждого использования рекомендуется мыть в легком мыльном растворе и менять каждые 6-12 мес.

20. Что такое пульсоксиметр и как он работает?

У детей, получающих домашнюю кислородотерапию, нужно проводить мониторинг сатурации кислорода с помощью пульсоксиметров. Мониторинг должен включать различные состояния активности.

В основе работы пульсоксиметра лежит способность гемоглобина, связанного и не связанного с кислородом, абсорбировать свет различной длины волны. Светодиоды излучают потоки света, которые, проходя через ткани, достигают фотодетектора. Ослабление световых потоков при прохождении через подкожный жировой, мышечный слои и венозно-капиллярную сеть расцениваются как фоновое. При прохождении пульсовой волны через артерию различие между фоновым и текущим током фотодетектора становится максимальным, пульсоксиметр определяет величину артериальной пульсации и по специальному алгоритму оценивает степень насыщения гемоглобина кислородом именно в артериальной крови. Соотношение между количеством кислорода, связанного с гемоглобином, и кислородной емкостью крови, выраженное в процентах, называется сатурацией (насыщение артериальной крови кислородом) [14, 18, 19].

Для новорожденных и младенцев используется специальный датчик, закрепляющийся на коже ладоней или стоп. Для детей старшего возраста используется датчик, закрепляющийся на пальце руки.

Ладонь ребенка и датчик должны быть сухими. Датчик необходимо периодически протирать слегка смоченной спиртом салфеткой. Измерять сатурацию необходимо, когда рука ребенка не двигается, в течение не менее 10-20 с.

21. Каковы целевые показатели насыщения крови (сатурация) кислорода при проведении домашней кислородотерапии?

Необходимо, чтобы уровень кислорода крови был >92% у детей без легочной гипертензии и >94% у больных легочной гипертензией [20].

Показатели сатурации кислорода ниже указанных свидетельствуют о недостатке кислорода (гипоксемии) и требуют увеличения подачи кислорода до потока, не выше допустимого в зависимости от возраста и используемого средства доставки кислорода (лицевая маска или носовые канюли), как указано выше. О недостатке кислорода могут свидетельствовать и некоторые симптомы (признаки), обнаруживаемые у ребенка.

22. Какие симптомы могут свидетельствовать об ухудшении состояния ребенка, находящегося на домашней кислородотерапии, и о развитии гипоксемии?

Симптомами недостатка кислорода у ребенка могут быть: низкие прибавки массы тела, длины/роста ребенка (у недоношенных детей до достижения постконцептуального возраста 50-52 нед прибавку массы тела необходимо оценивать по специальным диаграммам, например по диаграмме

Фентона или Intergrowth-21); изменение частоты дыхания (частое или в тяжелых случаях редкое, табл. 1); одышка (затруднение дыхания с втяжением межреберных промежутков, подреберий, яремной ямки, раздувание крыльев носа); увеличение частоты сердечных сокращений (тахикардия, см. табл. 1); синюшный цвет лица, губ, век и ногтей (цианоз); усталость, снижение переносимости физической нагрузки, к которой у маленьких детей относится сосание; беспокойство, раздражительность или вялость, нарушение сознания (заторможенность, потеря сознания); остановка дыхания (апноэ) [2, 3, 18].

Возрастные особенности показателей церебральной оксигенации у детей. - НЦЗД

Вместе с тем данные симптомы могут иметь и другие причины, а не только гипоксемию. Например, низкая прибавка массы тела может быть связана с недостаточной калорийностью питания. Для подтверждения связи данных симптомов с гипоксемией необходимо проведение пульсоксиметрии [21].

23. Сколько часов в день необходимо проводить кислородотерапию ребенку?

Продолжительность кислородотерапии зависит от того, сколько времени в течение суток у ребенка сатурация кислорода ниже целевых значений. Некоторым детям дополнительный кислород требуется только, когда они активны, или только во время ночного или дневного сна (эпизоды бессимптомного снижения сатурации чаще всего возникают во сне). В других случаях ребенку требуется дополнительный кислород 24 ч/сут, то есть непрерывно. Иногда внешне у ребенка нет признаков недостатка кислорода, однако это не всегда означает, что уровень кислорода в его организме в пределах нормы. Прерывистая кислородотерапия проводится в случаях периодически и эпизодически возникающей гипоксемии, например у детей с тяжелыми неврологическими нарушениями, которые нуждаются в дополнительном кислороде при аспирационной пневмонии и лечатся на дому [14].

24. Может ли кислород быть токсичен?

Кислород оказывает токсическое действие на дыхательные пути только в случаях, если его концентрация выше рекомендуемой. Если правильно соблюдать все рекомендации врача по домашней кислородотерапии, использовать средства доставки кислорода и скорость потока кислорода, назначенные врачом, без самостоятельного их превышения, кислород не будет отрицательно воздействовать на дыхательные пути и организм в целом.

Кроме того, для предотвращения токсичности кислорода рекомендовано регулярно обслуживать любое кислородное оборудование (замена фильтров в концентраторе, соблюдение условий хранения). Если ваш кислородный концентратор работает правильно, не должно быть причин для беспокойства.

Симптомами токсического воздействия кислорода на дыхательные пути могут быть постоянный кашель, отек легких. Однако данные симптомы могут возникать вследствие заболевания легких и никак не быть связаны с токсичностью кислорода [14].

25. Как влияет кислородотерапия на прогрессирование ретинопатии недоношенных?

В многочисленных исследованиях получены данные о том, что кислородотерапия с целевой сатурацией кислорода 85-89% уменьшает риск развития ретинопатии недоношенных, в то время как при показателях сатурации 91-95% он увеличивается. Однако было показано, что при кислородотерапии, проводимой для достижения целевой сатурации менее 90%, значительно увеличивался показатель смертности. В исследовании STOP-ROP («стоп ретинопатия недоношенных») были получены данные о том, что использование кислородотерапии для поддержания целевой сатурации кислорода от 96 до 99% не вызывает прогрессирования ретинопатии недоношенных [22].

26. Как кормить ребенка, получающего домашнюю кислородотерапию?

Если ребенку необходимо проведение кислородотерапии даже во время кормления, удобнее всего использовать для этой цели в качестве средства доставки кислорода носовые канюли.

В случаях, когда использование носовых канюль по тем или иным причинам невозможно, во время кормления необходимо держать лицевую маску максимально близко к лицу, не прерывая кислородотерапию, если ребенок нуждается в ней во время приема пищи.

Возможность прекращения кислородотерапии, проводимой в связи с заболеваниями легких, связана с ростом легких, поэтому очень важно избегать у больных задержки прибавок в массе и росте. Достаточные темпы роста обеспечиваются повышенной калорийностью питания и достаточным содержанием в нем белка. Если недоношенный ребенок находится на грудном вскармливании, то максимальное число калорий помогают получить специальные смеси-«усилители» (фортификаторы, добавляются в сцеженное грудное молоко). Если ребенок получает искусственное вскармливание, специальные смеси для недоношенных детей позволяют получить ребенку максимальное количество калорий [21].

27. Можно ли выходить из дома с ребенком, получающим непрерывную домашнюю кислородотерапию? Как гулять с ребенком, получающим кислородотерапию непрерывно?

Совсем необязательно с ребенком, получающим длительную кислородотерапию, постоянно сидеть дома.

Прогулки, выходы из дома, поездки на автомобиле возможны при наличии портативного кислородного оборудования (портативный кислородный концентратор, работающий от собственного аккумулятора, или же кислородные баллоны).

Кратковременные прогулки можно осуществлять, подключая небольшой концентратор к источнику бесперебойного питания.

Кроме того, можно найти уличные розетки. Подключаться можно с помощью удлинителей.

Однако концентраторы нельзя использовать на улице при температуре ниже 5 °С, а также во влажных условиях (дождливая погода, туман, около фонтана и т.п.).

28. Можно ли иммунизировать детей, находящихся на домашней кислородотерапии?

Сама по себе кислородотерапия не является противопоказанием для любого вида иммунизации, в том числе вакцинации. Однако некоторые заболевания, являющиеся причиной потребности в дополнительном кислороде, могут быть основанием для медицинского отвода от прививок. Таким образом, если это возможно, рекомендуется соблюдать принятый график вакцинации с дополнительной вакцинацией от гриппа и профилактикой респираторно-синцитиальной вирусной инфекции с помощью пассивной иммунизации специфическими моноклональными антителами (паливизумаб) [14, 23].

29. Что делать, если ребенок, получающий домашнюю кислородотерапию, заболел острым респираторным заболеванием?

В первую очередь при возникновении инфекционных заболеваний, появлении или усилении таких симптомов, как кашель, насморк, одышка, необходимо обратиться к врачу, вызвать бригаду скорой медицинской помощи. В большинстве случаев ребенку в такие моменты необходимо увеличить скорость потока кислорода для поддержания нормального уровня сатурации кислорода (под контролем пульсоксиметрии).

Если ребенок уже отлучен от кислорода, при присоединении респираторной инфекции обязательно проводится мониторинг уровня сатурации кислорода с помощью пульсоксиметра. При ее уменьшении <92% у детей без легочной гипертензии и <94% у больных с легочной гипертензией необходимо возобновить кислородотерапию [14].

При насморке используют сосудосуживающие капли в нос в соответствии с возрастом ребенка и инструкцией по применению. Нельзя использовать масляные капли для носа у детей, получающих домашнюю кислородотерапию.

Для снижения частоты повторных госпитализаций у кислородозависимых детей необходимо избегать контактов с инфекционными больными.

30. Как долго ребенок может нуждаться в дополнительном кислороде дома и от чего это зависит?

При улучшении состояния, росте легких, пропорциональном росту ребенка и увеличению его массы тела, уменьшается потребность в кислороде, что делает возможным постепенно отменить кислородотерапию. Тем не менее у некоторых детей кислородотерапия может продолжаться месяцы и даже годы. После отлучения от кислорода детям может потребоваться дополнительный кислород во время обострения основного заболевания или при инфекционных заболеваниях. Однако решение о прекращении кислородотерапии должен принимать доктор [14, 24, 25].

31. Как понять, что потребность в кислороде уменьшилась и ребенка можно начать отлучать от дополнительного кислорода?

Ребенка можно начать отлучать от дополнительной подачи кислорода при следующих условиях: у ребенка не отмечается признаков дыхательной недостаточности (частого дыхания, одышки, цианоза кожных покровов); нет свистящих хрипов; отсутствуют острые инфекционные заболевания; ребенок нормально прибавляет в массе тела (имеет массу тела >10-го центиля по соответствующей диаграмме); состояние ребенка стабильное (оценивается врачом); у ребенка нет легочной гипертензии (оценивается по данным ультразвукового исследования сердца — эхокардиографии); скорость потока кислорода <0,1-0,2 л/мин (в зависимости от возможностей изменения скорости потока концентратором); сатурация кислорода при проведении кислородотерапии поддерживается на стабильном уровне >92%; при кратковременном прекращении кислородотерапии (при уходе за ребенком) сатурация быстро восстанавливается, снижение сатурации незначительно [3, 14].

32. Как проводится отлучение ребенка от дополнительного кислорода?

Отлучение ребенка от дополнительного кислорода — это постепенный процесс, иногда на это требуется несколько месяцев. Отлучение ребенка, получающего кислородотерапию на дому, не требует госпитализации и проводится в домашних условиях.

Первый этап — мониторирование (длительная оценка) сатурации кислорода во время сна, бодрствования и кормления, а также проведение 2-часового испытания (дыхание комнатным воздухом), которое начинается с кратковременного прекращения кислородотерапии под контролем пульсоксиметрии. При снижении сатурации кислорода <92% кислородотерапия немедленно возобновляется. Если такое испытание пройдено успешно и в течение 2 ч не потребовался кислород и показатели сатурации кислорода были >92%, возможно отлучение от кислорода на 1-2 ч в дневное время, а затем постепенное увеличение длительности данного времени в зависимости от состояния ребенка.

Отлучение от кислорода в ночное время возможно только тогда, когда ребенок 3-4 нед обходится без дополнительной оксигенации в течение 12 ч днем. До прекращения использования кислорода в ночное время проводится мониторирование сатурации при дыхании комнатным воздухом ночью, для этой цели удобно использовать запись сатурации кислорода, осуществляемую автоматически на некоторых пульсоксиметрах с последующей расшифровкой. Если результаты ночного исследования удовлетворительные (сатурация кислорода >92%), ребенок полностью отлучается от кислорода.

После того как кислородотерапия прекратится полностью, рекомендуется оставить оборудование дома (концентратор кислорода, пульсоксиметр) еще на 2-3 мес.

В том случае, если после отмены кислородотерапии ребенок начинает плохо прибавлять в массе тела, несмотря на гиперкалорийную диету, необходимо возобновить мониторинг пульсоксиметрии, на основании которого может быть принято решение о повторном назначении кислородотерапии, так как низкая прибавка массы тела — надежный критерий наличия эпизодов гипоксемии [3, 14].

33. Когда с ребенком, получающим домашнюю кислородотерапию, можно путешествовать на самолете?

Некоторым пациентам, даже после отлучения от кислородотерапии, может потребоваться кислород во время авиаперелета или на большой высоте над уровнем моря. Если уровень сатурации кислорода на уровне моря у ребенка >95%, дополнительный кислород в полете не требуется, если <92% (у пациентов с легочной гипертензией — <95%) -требуется. При уровне сатурации кислорода 92-95% требуется специальное обследование на готовность к перелету (fitness-to-fly test). Данный тест рекомендовано пройти перед полетом, если ребенок прекратил получать дополнительный кислород в течение последних 6 мес или продолжает его получать.

Fitness-to-fly-тест проходит в большой кабине, имитирующей пребывание в самолете. Ребенок сидит внутри такой кабины в течение 20 мин, во время которых измеряют уровень сатурации кислорода посредством пульсоксиметрии. До начала теста закрепляют носовые канюли и при необходимости ребенок начинает получать кислород. Затем концентрацию кислорода в воздухе данной кабины уменьшают до 15% посредством добавления азота. Возникающее снижение сатурации необходимо корригировать подачей кислорода через носовые канюли, титруя его до нормализации сатурации. Данный поток кислорода в дальнейшем должен использоваться при возникновении эпизодов низкой сатурации непосредственно на борту самолета.

При невозможности проведения данного теста можно рекомендовать проведение пульсоксиметрии на борту воздушного судна, и дополнительный кислород дается при снижении сатурации кислорода ниже целевых значений под контролем пульсоксиметрии.

Однако не все авиакомпании разрешают перевозить кислородное оборудование на борту. Перед покупкой билета рекомендуется уточнить о такой возможности непосредственно у представителей авиакомпании.

Некоторые авиакомпании позволяют путешествовать без справки/письма от врача, в то время как другие перед полетом требуют заранее заполнить специальную медицинскую форму, заверенную вашим врачом или медицинским персоналом авиакомпании. В данной форме должна быть фраза о том, что пациенту не противопоказаны авиаперелеты [26].

Финансирование. Пособие подготовлено в рамках инициативной научно-исследовательской работы Медицинского института РУДН по теме № 031216-0-000 «Изучение клинико-патогенетических аспектов приобретенных и врожденных заболеваний дыхательной системы у детей».

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Методы оксигенотерапии

Все способы подачи кислорода делят на две группы.

Ингаляционные

Неингаляционные

Кислородная маска

Носовой катетер или канюля

Интубационная трубка

Трахеостомическая трубка

Кислородная подушка

Кислородный коктейль

Парентерально

Наружно (кислородная ванна, барокамера)

Наибольшую эффективность в борьбе с низкой сатурацией показывают ингаляционные методы. При дыхательной недостаточности средней степени в больницах обычно используются кислородные концентраторы, к которым подключаются лицевые маски или носовые канюли. Рассмотрим, какие преимущества и недостатки имеют эти способы:

Преимущества

Недостатки

Носовые канюли или катетеры

Пациент может свободно разговаривать, пить, есть, кашлять.

Без использования дополнительных методов увлажнения возникает сильная сухость носовой полости.

Концентрация кислорода не должна превышать 40 %.

Если используются носовые катетеры, то пациент испытывает ощутимый дискомфорт.

Выпадают при чихании.

Лицевая маска

Хорошее увлажнение дыхательной смеси.

Можно использовать газовую смесь с высоким содержанием кислорода.

Есть возможность проведения экстренной оксигенотерапии: не требуется процедур для подключения канюль или катетеров.

Необходимо делать перерывы, чтобы кашлять, кушать, разговаривать.

У пациентов возникает чувство дискомфорта, давления на уши и нос.


При критической сатурации кислорода используются неинвазивная и инвазивная искусственная вентиляция легких.

  • НИВЛ подает воздух пациенту через дыхательный контур. В качестве интерфейса могут использоваться носовая или рото-носовая маска, шлем, мундштук. Особенностью аппаратов для неинвазивной вентиляции является то, что они создают давление для комфортных вдохов и выдохов. При этом больной продолжает дышать самостоятельно, но получает аппаратную поддержку.

  • ИВЛ — респираторная поддержка, обеспечивающаяся при помощи принудительной прокачки легких кислородом. Аппарат полностью берет на себя дыхание, это болезненно для пациента, поэтому врачи вводят обезболивающие и седативные препараты. Газовая смесь подается через трубку, помещенную в трахею. В критических ситуациях проводится операция трахеостомия — рассечение передней стенки трахеи для введения трубки непосредственно в ее просвет.

Инвазивная вентиляция легких применяется только в крайних ситуациях — например, когда сатурация кислорода равна 70 или ниже, а НИВЛ не помогает. Проблема с использованием аппаратов для ИВЛ заключается в том, что мышцы, которые отвечают за дыхание, атрофируются буквально за несколько часов.

Если больному удается успешно справиться с пневмонией, при отключении от ИВЛ ему придется заново учиться дышать и глотать. Существует и больной риск осложнений, в том числе ухудшение когнитивных функций, полиорганная недостаточность, обменные нарушения.

Пульсоксиметрия как метод раннего неонатального скрининга на наличие критических пороков сердца у детей

В последние годы во многих странах мира в программу неонатального скрининга сердечно-сосудистых заболеваний внедряется пульсоксиметрия, поскольку чувствительность данного метода в отношении выявления врожденных пороков сердца (ВПС), по данным многих авторов, варьирует от 62,1 [8] до 93,2% [16], а специфичность достигает 99,9% [17]. Американская академия педиатрии (ААP) рекомендует эту простую, неинвазивную и безболезненную методику для оценки величины сатурации крови кислородом (SpO2) в целях раннего выделения группы новорожденных, подлежащих углубленному кардиологическому обследованию, в частности эхокардиографии (ЭхоКГ) [10].

Специалисты ААР разработали методологию пульсоксиметрии в неонатологии, согласно которой сатурацию крови кислородом необходимо измерять на правой руке и одной ноге в первые 24-72 ч после рождения [6, 8, 10, 13, 17].

Отечественные публикации, посвященные проведению скрининга сатурации крови кислородом у новорожденных, крайне малочисленны [2, 3]. Однако интерес к данному вопросу растет, обсуждаются нормативы SpO2 и диагностическая значимость пульсоксиметрии у новорожденных детей [1-3].

Цель исследования — оценка информативности пульсоксиметрии как метод неонатального скрининга на наличие критических пороков сердца у условно здоровых доношенных новорожденных в раннем неонатальном периоде.

Материал и методы

Проспективно обследованы 544 доношенных условно здоровых новорожденных, которые были рождены в ГБУЗ Ярославской области «Областной перинатальный центр» (Ярославль) в 2022-2022 гг. и на момент проведения скрининга находились в удовлетворительном состоянии. Средняя масса тела при рождении составила 3467,51±490,02 г, средний срок гестации — 39,53±1,08 нед. Оценка по шкале Апгар в конце 1-й минуты в среднем соответствовала 8,25±1,05 балла, в конце 5-й минуты — 8,83±0,45 балла. Средняя частота дыхания составила 41,30±2,20 в минуту, частота сердечных сокращений — 140,40±5,60 в минуту.

Из исследования исключались дети с дыхательными нарушениями, с заведомо известной (верифицированной внутриутробно) патологией сердечно-сосудистой системы, с врожденными пороками развития, с задержкой внутриутробного развития, с внутриутробными инфекциями, с гемолитической болезнью новорожденного и асфиксией.

Оценка сатурации гемоглобина крови кислородом у всех детей выполнялся с помощью пульсоксиметров с технологией Masimo [5]. Первое измерение сатурации гемоглобина крови кислородом выполнялось в возрасте 3-12, повторное — в возрасте 63-72 ч жизни. Каждое измерение проводилось на обеих руках и ногах последовательно не менее 30 мин на каждой конечности при соблюдении следующих условий: 1) спокойное состояние ребенка (сон или спокойное бодрствование); 2) ребенок адекватно согрет (ножки равномерно теплые); 3) оценка и фиксация показателей осуществлялась при наличии стабильной, непрерывной пульсовой кривой.

При оценке результатов учитывалось, что в норме SpO2 должна быть 95%, а разница показателей между конечностями 3% [6, 8, 10, 13, 16]. В этих случаях регистрации нормальных показателей SpO2 скрининг считался успешно пройденным. Если же в результате любого измерения SpO2 было менее 90%, или SpO2 = 90-95% на правой руке и левой ноге, или разница SpO2 на правой руке и левой ноге превышала 3%, тогда скрининг считался положительным и такому ребенку проводили ЭхоКГ в течение 12 ч после теста независимо от клинической оценки состояния.

За ложноположительные принимались те результаты скрининга, при которых в ходе проведения ЭхоКГ в случае положительного теста не выявлен критический ВПС. За ложноотрицательные — те результаты, при которых тест был расценен как отрицательный, но при проведении ЭхоКГ был выявлен критический ВПС. Оценка обсуждаемых показателей выполнялась в группе детей (226 человек), где наличие или исключение ВПС подтверждалось путем проведения ЭхоКГ.

Отбор новорожденных с отрицательным результатом теста, выполненным в 1-е сутки жизни, на ЭхоКГ в целях выявления ложноотрицательных результатов скрининга осуществлялся случайным образом. Исследование проводилось в течение 12 ч после эхокардиографического обследования с использованием ультразвукового диагностического прибора «Sonosite MicroMax» (США) по стандартному протоколу.

Все результаты измерений фиксировали в истории развития новорожденного в специально разработанную и утвержденную руководителем учреждения унифицированную форму ведения медицинской документации.

Статистическую обработку данных проводили с использованием компьютерных программных средств пакета Statistica 6.0.

Результаты и обсуждение

У условно здоровых доношенных новорожденных средние показатели сатурации крови кислородом в первые 12-24 ч жизни на всех конечностях составили 97,47±2,03% (Me 98,00; 95% доверительный интервал [ДИ] 97,29-97,64), что соответствует опубликованным ранее данным, согласно которым SpO2 у таких детей равна 97,3±1,3% [9]. Устойчивая регистрация сатурации крови кислородом в течение всего периода ее мониторирования менее 95% на правой руке определялась у 23 (4,2%) новорожденных, что также перекликается с результатами исследования D.M. Sendelbach и соавт. (2008), где снижение сатурации крови кислородом <95% отмечено в 4,5% случаев [15], и в меньшей степени с данными А.С. Сенаторовой и соавт. (2022), где подобные изменения отмечены в 9 (2,4%) случаях [4].

У 1 из 23 новорожденных был выявлен дуктус-зависимый врожденный порок сердца — транспозиция магистральных сосудов. У остальных к концу 1-х суток и на 3-и сутки жизни сатурация нормализовалась и в среднем на правой руке составляла 98,89±1,21%.

Среднее различие SpO2 между верхними и нижними конечностями у здоровых новорожденных не превышало 1%, что перекликается с данными T.R. Hoke (2002) [7]. Градиент SpO2 между правой рукой и левой ногой >3% был зарегистрирован у 5 (0,9%) новорожденных. Критических ВПС со стороны сердечно-сосудистой системы у этих детей не выявлено.

Таким образом, результаты скрининга SpO2 были расценены как подозрительные (SpO2 менее 95% и/или градиент между правой рукой и левой ногой более 3%) и потребовали проведения ЭхоКГ в 5,15% (28 детей), что практически сопоставимо с данными, опубликованными в 2022 г. A.A. Zuppa и соавт., где частота подобных ситуаций составляла 5,2% [17]. Только в одном случае положительного результата теста была выявлена транспозиция магистральных сосудов, а следовательно, частота ложноположительных ответов (не выявлены критические ВПС) была получена в 3,57% случаев (у 1 ребенка из 28).

Измерение SpO2 после 24 ч жизни показало, что частота положительных результатов была почти в 7 раз меньше по сравнениию с показателями теста, проведенного в первые 24 ч жизни, и составила 0,73% (4 ребенка).

Критических ВПС со стороны сердечно-сосудистой системы у этих детей не выявлено. Полученные результаты соответствуют большинству исследований, посвященных скринингу сатурации крови кислородом, и подтверждают мнение о том, что более позднее проведение теста позволяет уменьшить количество ложноположительных результатов [8, 10].

В рамках данного исследования ЭхоКГ всего была выполнена 226 новорожденным (в том числе 28 детям с положительным результатом теста, из них 1 с критическим ВПС).

Частота регистрации тех или иных структурных особенностей строения сердца и крупных сосудов, включая малые аномалия развития, у новорожденных без критического ВПС (128 из 225 детей) составила 56,8%.

Характеристика основных находок, выявленных при проведении ЭхоКГ, представлена в табл. 1. Критические ВПС не выявлены. Все остальные обнаруженные изменения не оказывали клинически выраженного влияния на гемодинамику и не приводили к нарушению состояния детей в раннем неонатальном периоде. Таким образом, можно констатировать, что в выделенной группе детей с отрицательным тестом (198 новорожденных) ложноотрицательных результатов не выявлено.

Возрастные особенности показателей церебральной оксигенации у детей. - НЦЗД

Из 225 обследованных новорожденных более детальный анализ центральной гемодинамики был выполнен в группе, состоящей из 152 доношенных детей. Отбор новорожденных в эту группу осуществлялся методом случайной выборки. Результаты представлены в табл. 2.

В целях оценки взаимосвязей между сатурацией крови кислородом и клинико-лабораторными данными (табл. 3), а также с основными гемодинамическими показателями нами выполнен корреляционный анализ.

Возрастные особенности показателей церебральной оксигенации у детей. - НЦЗД

По результатам корреляционного анализа обнаружена статистически значимая взаимосвязь сатурации крови кислородом с акроцианозом. При градиенте >3% между правой рукой и левыми конечностями отмечался более выраженный периферический цианоз (r=0,495, p=0,000).

Параллели между показателями SpO2 и уровнем гемоглобина представлены в табл. 3. Средний уровень гемоглобина у обследованных детей в 1-е сутки жизни составил 189,31±23,59 г/л.

Оказалось, что чем выше уровень гемоглобина, тем выше риск более низких показателей сатурации крови кислородом и тем выше частота регистрации SpO2 <90%, т.е. можно предположить, что неонатальная полицитемия при отсутствии у новорожденного критического ВПС предрасполагает к развитию гипоксемии. Данное обстоятельство объясняется тем, что при увеличении вязкости крови, которое присутствует при развитии полицитемии [14], существенно уменьшается органный кровоток, т.е. развивается циркуляторная гипоксия [11]. Также в работах D.J. Murphy и соавт. (1985) было показано, что у новорожденных с полицитемией регистрируется повышение системного сосудистого сопротивления и резистентности легочных сосудов, что может способствовать развитию выраженной дисфункции миокарда и приводить к снижению фракции выброса [12].

Также нами обнаружена нерезко выраженная, но статистически значимая взаимосвязь между частотой положительного результата теста (для SpO2 менее 95%) и фракцией выброса (r=-0,229, p=0,004).

Заключение

Таким образом, использование пульсоксиметрии у клинически здоровых новорожденных в раннем неонатальном периоде — доступный и безопасный метод скрининга на наличие критических пороков сердца у детей. Более позднее проведение пульсоксиметрии в целях выявления критических врожденных пороков сердца позволяет уменьшить количество ложноположительных результатов.

Также можно предположить, что на показатели сатурации гемоглобина крови кислородом в 1-е сутки жизни у доношенных новорожденных без критических ВПС могут оказывать влияние уровень гемоглобина и сократительная способность миокарда. Однако в данном направлении требуется проведение дальнейших исследований.

ЛИТЕРАТУРА

1. Антонов А.Г., Рындин А.Ю. Транскутанный мониторинг газов крови: Клиническое руководство / под ред. Е.Н. Байбариной. М., 2022. 24 с.

2. Карпова А.Л., Спивак Е.М., Пыханцева А.Н. Диагностическое значение определения величины сатурации кислорода у доношенных новорожденных // Пермский медицинский журнал. 2022. Т. 33, № 5. С. 6-10.

3. Неонатальный скрининг с целью выявления критических врожденных пороков сердца: методические рекомендации (№ 12) / Сост.: Школьникова М.А., Бокерия Е.Л., Дегтярева Е.А., Ильин В.Н., Шарыкин Е.С. М.: ООО «М-Арт», 2022. 36 с.

4. Сенаторова А.С., Гончарь М.А., Пугачева Е.А. Роль пульсоксиметрии как скринингового метода выявления кардиальной патологии у новорожденных // Материалы науч.-практ. конф. «Современная кардиология и кардиохирургия — путь от проблем к решению». Судак, 2022. 246 с.

5. Barker S.J. «Motion-Resistant» pulse oximetry: a comparison of new and old models // Anesth Analg. 2002. Vol. 95, N 4. P. 967-972.

6. Ewer A.K., Middleton L.J., Furmston A.T., Bhoyar A. et al. Pulse Oximetry Screening for Congenital Heart Defects in Newborn Infants (Pulseox): a test accuracy study // Lancet. 2022. Vol. 378, N 9793. Р. 785-794.

7. Hoke T.R., Donohue P.K., Bawa P.K., Mitchell R.D. et al. Oxygen saturation asa screening test for critical congenital heart disease: a preliminary study // Pediatr Cardiol. 2002. Vol. 23. P. 403-409.

8. Kemper A.R., Mahle W.T., Martin G.R., Cooley W.C. et al. Strategies for implement screening for critical congenital heart disease // Pediatrics. 2022. Vol. 128. e1258-1268.

9. Levesque B.M., Pollack P., Griffin B.E., Nielsen H.C. Pulse oximetry: what’s normal in the newborn nursery? // Pediatr. Pulmonol. 2000.Vol. 30. P. 406-412.

10. Mahle W.T., Martin G.R., Beekman R.H. III, Morrow W.R. et al. Endorsement of health and human services recommendation for pulse oximetry screening for critical congenital heart disease // Pediatrics. 2022. Vol. 129. P. 190-193.

11. Mimouni F.B., Merlob P., Dollberg S., Mandel D. Neonatal polycythaemia: critical review and a consensus statement of the Israeli Neonatology Association // Acta Paediatrica. 2022. Vol. 100. Р. 1290-1296.

12. Murphy D.J., Reller M.D., Meyer R.A., Kaplan S. Effects of neonatal polycythemia and partial exchange transfusion on cardiac function: an echocardiographic study // Pediatrics. 1985. Vol. 76. P. 909-913.

13. Roberts T.E., Barton P.M., Auguste P.E., Middleton L.J. , Furmston A.T., Ewer A.K. Pulse oximetry as a screening test for congenital heart defects in newborn infants: a cost-effectiveness analysis // Arch. Dis. Child. 2022. P. 1-6.

14. Rosenkrantz T.S. Polycythemia and hyperviscosity in the newborn // Semin. Thromb. Hemost. 2003. Vol. 29, № 5. Р. 515-527.

15. Sendelbach D.M., Lai S., Jackson G.J., Fixler D. et al. Pulse oximetry (POx) screening of term and late preterm neonates at 4 hours postnatal (PN) to detect cyanotic congenital heart disease (CCHD). Presented at: Pediatric Academic Societics; Honolulu, Hawaii; May 2-6, 2008. Abstract E-PAS2008:5896.2.

16. Zhao Q., Ma X., Ge X, Liu F. et al. Pulse oximetry with clinical assessment to screen for congenital heart disease in neonates in china: a prospective study. The neonatal congenital heart disease screening group // The Lancet. 2022. Vol. 384, N 9945. P. 747-54.

17. Zuppa A.A., Riccardi R., Catenazzi P., D’Andrea V. et al. Clinical examination and pulse oximetry as screening for congenital heart disease in low-risk newborn // J. Matern Fetal Neonatal Med. 2022. Vol. 28. P. 7-11.

Оцените статью
Кислород
Добавить комментарий