Дыхание растений — урок. Окружающий мир, 3 класс.

Дыхание растений — урок. Окружающий мир, 3 класс. Кислород

Виды размножения

Размножение — процесс, в результате которого число определённого организма увеличивается.

У растительных организмов различают следующие способы размножения:

  1. Половое;
  2. Бесполое (спорами и вегетативное).

Половое размножение. Если при описании способа размножения растений используются слова «гаметы», то можете без тени сомнения выбирать половое размножение. Гаметы — это специальные клетки, которые предназначены для такого способа репродукции. Фаза в жизненном цикле, которая производит половые клетки, именуется гаметофитом.

У гамет есть два вида:

  1. Мужские: подвижные мужские клетки называют сперматозоидами, а неподвижные — спермиями. У спермиев нет жгутиков (присущи покрытосеменным и голосеменным);
  2. Женские: женские клетки именуются яйцеклетками. Обычно яйцеклетки намного крупнее мужских гамет, так как содержат запас питательных веществ. Яйцеклетка состоит из цитоплазмы — ооплазмы — и ядра.

Половые клетки должны слиться друг с другом. Процесс, в итоге которого создаётся единый организм, называется оплодотворение. Единый организм именуется зиготой, из которого далее сформируется новое растение. Свежий растительный организм содержит набор признаков, который ему передали женские и мужские клетки.

1 oplodotvorenie
Оплодотворение

Наследственный материал содержится в хромосомах. Гаметы гаплоидны, то есть в них находится одинарный набор хромосом. На схемах такой хромосом отмечается латинской буквой n. Одинарный набор присущ всем гаметофитам и некоторым водорослям (хлорелла) и грибам (мукор).

2 gametofit
Гаметофит папоротника

При слиянии гамет формируется зигота, которая имеет двойной (диплоидный) набор хромосом. При этом родительские признаки перемешиваются, и образуется уникальное растение со своим набором признаков. В этом и состоит биологический смысл: комбинации генов увеличивают генетическое разнообразие потомства, что приводит к появлению новых более приспособленных организмов.

Бесполое размножение. Бесполая репродукция бывает двух видов: вегетативная и размножение спорами.

Вегетативное размножение. В отличие от полового размножения, в вегетативном размножении не участвуют специализированные клетки. Растительный организм развивается из частей вегетативных органов: корня и побега.

Такой способ размножения характерен для всех растений. Наиболее часто вегетативно размножаются покрытосеменные растения из-за большого разнообразия видоизменённых побегов и корней.

В ходе формирования знаний о садоводстве человечество освоило способ вегетативного размножения — увеличение числа растений посредством черенков и отводков. Черенки — это такие части растений, которые способны закрепиться в почве и дать новые корни. Для этого черенок отделяют от материнского растительного организма и сажают в почву. Таким образом можно размножить огромное множество растений, например, жимолость или бузину.

3 cherenkovanie
Черенкование

Растительные организмы, которые не способны хорошо укорениться в почве, размножают отводками (крыжовник). При этом способе дочернее растение не отделяют от материнского, а лишь загибают часть побега и присыпают сверху почвой.

4 razmnozhenie otvodkami
Размножение отводками

Некоторые растения сами выработали органы для вегетативного размножения. Например, землянику легко клонировать самим, благодаря наличию видоизменённого побега — усов.

5 razmnozhenie usami
Размножение усами земляники

Размножение спорами. Не стоит путать споры бактерий и споры растений. Споры бактерий — стадия жизни микроорганизмов, в которой максимально замедлены обменные процессы. Споры нужны бактериям в неблагоприятных условиях для выживания. Бактерии покрываются толстой оболочкой, которая может пережить экстремальные температуры.

Споры растительных организмов предназначены для размножения. Оболочка — спородерма — состоит из двух слоёв: экзины и интины. Экзина имеет выросты, которые позволяет цепляться за гладкие части. Таким способом размножаются грибы, водоросли и высшие растения.

В отличие от размножения гаметами, в процессе размножения спорами участвует одна клетка. Споры прорастают на стадии жизненного цикла растения, которая называется спорофит. Специальные органы, которые несут споры, называются спорангии.

Споры бывают подвижные и неподвижные. Подвижные споры — зооспоры — имеют жгутики для передвижения. У неподвижных спор жгутика нет.

Спорофит диплоиден, то есть имеет двойной набор хромосом. На схемах записывают как 2n. Растение, которое сформировалось из споры, полностью повторяет материнский растительный организм, потому что не происходит перемешивания генетических материалов.

Растению удобнее размножаться спорами, нежели гаметами, так как в этом процессе участвует всего одна клетка. Споры отделяются от материнского организма и прорастают там, где образуются благоприятные для прорастания условия.

6 sporofit
Спорофит папоротника

Для многих растений характерно чередование поколений, то есть какое-то время организм пребывает на стадии спорофита, а какое-то — на стадии гаметофита. Из-за этого растения одного вида могут отличаться не только способом размножения, но и внешним видом. Всё дело в преимуществах поколений.

Преимущества полового размножения:

Преимущества бесполого размножения:

7 Cheredovanie ij u paporotnikov
Чередование поколений папоротника

Поколение растения, которое существует в жизненном цикле дольше, называется доминирующим. 

8 evoljucija cheredovanija gametofita i sporofita
Изменение соотношения между гаметофитом и спорофитом в процессе эволюции

Сравнение фотосинтеза и аэробного дыхания

Тема 17. Энергетический обмен. Решение задач

Основные вопросы теории

Совокупность реакций расщепления органических соединений называется диссимиляцией, представляет собой энергетический обмен, или катаболизм, обеспечивает клетку энергией.

Извлечение энергии осуществляется в клетке путем окисления веществ в процессе дыхания. Поэтому такое дыхание называют биологическим окислением или клеточным дыханием.

Клеточное дыхание – это окисление субстрата, приводящее к получению химической энергии (АТФ). Субстратами для дыхания служат органические соединения – углеводы, жиры, белки. Большинство клеток использует в первую очередь именно углеводы.

Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например, при длительном голодании.

Клеточное дыхание – ферментативное разложение органических веществ (глюкозы) в клетке до СО2 и Н2О в присутствии О2 с выделением энергии.

Включает3 этапа, каждый из которых осуществляется при участии ферментов в определенных участках клеток.

I этап – подготовительный.

В пищеварительной системе крупные молекулы пищи распадаются:

полисахариды→глюкоза,

белки →аминокислоты,

жиры→глицерин и жирные кислоты.

Энергия рассеивается в виде тепла. Мономеры всасываются в кровь и доставляются к клеткам.

II этап – бескислородный, неполное окисление, анаэробное дыхание – гликолиз, брожение.

Протекает в цитоплазме, 1 молекула глюкозы расщепляется до 2-х молекул ПВК без О2.

Чистый выход – 2 АТФ.

С6Н12О6 2Н3РО4 2АДФ →2С3Н6О3 2Н2О 2 АТФ

Гликолиз в мышцах: С6Н12О6 →2С3Н6О3 2 АТФ

ПВК→молочная кислота

Брожение (дрожжи): С6Н12О6 →2С2Н5ОН 2СО2 2 АТФ

этиловый спирт

Если кислорода в клетке много, то

III этап – кислородный, полное окисление, аэробное дыхание.

Происходит в митохондриях при доступе О2.

(Видеофрагмент «Строение митохондрии».)

Условия процесса:наличиеферментов, молекул-переносчиков электронов и Н, АДФ, Ф, неповрежденные мембраны митохондрий.

а) окислительное декарбоксилирование ПВК, образуются ацетилКоА, НАДН и СО2;

б) цикл Кребса – цикл трикарбоновых кислот.

В матриксе митохондрий образуются АТФ, НАДН, ФАДН, СО2;

в) окислительное фосфорилирование – перенос ē от НАДН и ФАДН по цепи транспорта ē, встроенной в кристы, на акцептор О2.

От НАДН и ФАДН отсоединяются протоны и электроны, ē переносятся на О2 → Н2О, протоны → в матрикс митохондрий.

В цепи транспорта ē есть три участка фосфорилирования, в которых образуется 34 АТФ.

Энергетический эффект III этапа – 36 АТФ.

Суммарный энергетический эффект – 38 АТФ:

С6Н12О6 6О2 38Н3РО4 38АДФ → 6СО2 6Н2О 38АТФ,

или

С6Н12О6 6О2→6СО2 6Н2О 38АТФ

Сравнение фотосинтеза и аэробного дыхания

Сходства

Необходим механизм обмена СО2 и О2.

2. Необходимы специальные органеллы (хлоропласты, митохондрии).

Необходима цепь транспорта ē, встроенная в мембраны.

4. Происходит фосфорилирование (синтез АТФ).

5. Происходят циклические реакции (цикл Кальвина – фотосинтез, цикл Кребса – аэробное дыхание).

Различия

ФотосинтезАэробное дыхание
1.

Анаболический процесс, из простых неорганических соединений (СО2 и Н2О) синтезируются углеводы. 2. Энергия АТФ накапливается и запасается в углеводах.

3. О2 выделяется. 4. СО2 и Н2О потребляются. 5. Увеличение органической массы. 6. У эукариот протекает в хлоропластах. 7. Только в клетках, содержащих хлорофилл, на свету.

1. Катаболический процесс, углеводы расщепляются до СО2 и Н2О. 2. Энергия запасается в виде АТФ. 3. О2 расходуется. 4. СО2 и Н2О выделяются. 5. Уменьшение органической массы. 6. У эукариот протекает в митохондриях. 7. Во всех клетках в течение жизни непрерывно.

Date: 2022-07-17; view: 2022; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Структура всех митохондрий похожа, и функция их неизменно одна и та же – это энергетические станции клетки.

Именно в митохондриях происходит такой процесс, как клеточное дыхание. Именно во внутреннем пространстве митохондрий имеет место цикл Кребса, в ходе которого расходуется пируват, выделяется углекислый газ, производится часть АТФ и восстанавливается кофермент НАД .

Структура и функции пластид более разнообразны.

Различают так называемые:

  • пропластиды – мелкие нефункциональные ювенильные пластиды, из которых развиваются другие типы пластид;
  • лейкопласты – бесцветные пластиды, участвующие в синтезе жиров;
  • амилопласты – пластиды, запасающие крахмал; в конечном счете они превращаются вкрахмальные зерна, в каких, например, запасен крахмал у картофеля;
  • хромопласты – пластиды, наполненные пигментами каротиноидами; их можно найти, к примеру, в плодах рябины.
  • хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез, как световая, так и темновая его фазы.

Основной структурной особенностью хлоропластов являются граны – стопки тилакоидов.

Таким образом, хлоропласты имеют наиболее развитую внутреннюю мембранную структуру, так как в мембране хлоропластов располагаются и фотосистемы, и фермент рибулозофосфаткарбоксилаза.

И митохондрии, и большинство пластид являются овальными или цилиндрическими структурами.

Однако многие неродственные друг другу водоросли имеют единственный хлоропласт на клетку, он может иметь самую необычную форму. Встречаются и митохондрии с преобразованной структурой –одна спирально закрученная митохондрия имеется в шейке сперматозоида, т.е. она обвивает основание его жгутика.

Самой потрясающей общей особенностью митохондрий и пластид является то, что они имеют свою, независимую от ядра, генетическую систему. И эта генетическая система очень похожа на генетическую систему прокариот.

В ее состав входит прежде всего собственная, соответственно митохондриальная или пластидная ДНК. У митохондрий, как и у бактерий, ДНК имеет кольцевую структуру (лишь у некоторых простейших – линейную). ДНК пластид организована в сложные букетоподобные структуры, состоящие из частично спаренных друг с другом кольцевых и линейных фрагментов, но исходной структурной единицей ее также является элементарная кольцевая ДНК.

ДНК пластид и митохондрий не имеет характерной хроматиновой упаковки, здесь нет нуклеосом и гистонов, вообще здесь гораздо меньше белков.

Иначе говоря, все устроено как у прокариот. Промоторы и терминаторы также бактериального типа. Далее, в пластидах и митохондриях имеются рибосомы, причем рибосомы именно прокариотического типа. Как и у прокариот, при трансляции синтез полипептидной цепи начинается с аминокислоты формилметионина. У пластид к прокариотическому типу принадлежат также и свои тРНК, РНК-полимеразы, регуляторные последовательности.

Впрочем, некоторые гены как пластид, так и митохондрий содержат интроны, подобно ядерным генам эукариот и в отличие от генов бактерий.

Поэтому считываемая с них во время транскрипции РНК должна быть подвергнута сплайсингу. Возможно, эти гены «заразились» интронами от ядерного генома.

Все эти факты относительной автономии пластид и митохондрий и их глубинного сходства с прокариотами, которое не может быть случайным, свидетельствуют об одном – пластиды и митохондрии на самом деле неродственны эукариотической клетке.

Они произошли от каких-то прокариот, которые когда-то поселились внутри эукариотической клетки. Считается, что это были эндосимбионты – организмы, которые живут внутри других организмов и находятся с ними в отношениях симбиоза – взаимной выгоды.

Таковы, например, зеленые водоросли, живущие внутри кораллов и некоторых плоских червей.

Митохондрии произошли от каких-то аэробных (способных к дыханию кислородом) бактерий, к каковым относится большинство современных бактерий. Аэробные бактерии, в свою очередь, произошли от фотосинтезирующих бактерий, утративших фотосинтез. Об этом говорит поразительное сходство цепи переноса электронов в системе клеточного дыхания и при фотосинтезе.

Предполагают, что митохондрии произошли именно от каких-то пурпурных бактерий, утративших способность к фотосинтезу. Это произошло около 1-1,5 млрд лет назад, когда в атмосфере впервые появился в достаточных концентрациях свободный кислород, наработанный цианобактериями (сине-зелеными водорослями), господствовавшими в то время на мелководьях.

Предками пластид наверняка были какие-то цианобактерии (сине-зеленые водоросли), об этом говорит сходный набор пигментов и те же самые две сопряженные фотосистемы.

Причем хлоропласты красных водорослей, динофлагеллят бурых золотистых водорослей и зеленых водорослей зеленых растений происходили от разных прокариот и были «одомашнены» независимо. Хлоропласты красных водорослей по составу пигментов прямо соответствуют цианобактериям.

Открыты и свободноживущие и симбиотические бактерии, по составу пигментов соответствующие двум другим типам хлоропластов (бактерия Prochloron с хлорофиллами a и b, как у зеленых водорослей и растений, является симбионтом оболочников).

Приобретя митохондрии, эукариоты обзавелись мощными энергетическими станциями, которые намного повысили энергообеспеченность клетки.

А приобретя пластиды, часть эукариотических клеток получила возможность к автотрофии и стала тем, что мы называем растениями.

Пластиды и митохондрии давно утратили свою автономность. Большая часть белков, функционирующих в этих органеллах, кодируется генами, находящимися в ядре.

У пластид даже часть рибосомальных РНК и белков, часть субъединиц РНК-полимеразы и целиком белки репликации – все прокариотического типа – кодируются в ядре.

Судя по всему, в ходе эволюции шел непрерывный процесс экспроприации генов ядром из органелл, перенесения их из органелльного генома в хромосомы.

Под дыханием понимается процесс, связанный с распадом углеводов, в результате которого высвобождается энергия, обеспечивающая метаболизм и транспорт в растении.

Так как кинетика метаболизма и транспорта уже описана, то из известных балансовых соотношений можно вычислить затраты субстрата на дыхание. Отметим, что при описании дыхания объединены две стадии преобразования химической энергии: стадии окисления субстрата, во время которой образуются макроэргические связи АТФ, и стадия использования энергии АТФ.

Кроме того, в балансовом уравнении дыхания учитываются затраты углеводов на обеспечение энергией процесса биосинтеза и транспорта органических и неорганических веществ.

В процессе дыхания выделяется углекислый газ, который частично используется в фотосинтезе. Его динамика описывается на основе балансовых соотношений.

БАЛАНС КИСЛОРОДНЫЙ — соотношение количества кислорода, выделяемого растениями при фотосинтезе (и частично освобождаемого в ходе спонтанных химических реакций в земной коре), и количества кислорода, потребляемого живыми организмами при дыхании, идущего на процессы гниения, окисления неорганических веществ и используемого в промышленности (см. круговорот кислорода).[ …]

Наконец, как известно, в процессе фотосинтеза растения создают углеводы, на что потребляется углекислый газ; в процессе дыхания углеводы разрушаются с выделением углекис ■ лого газа. Интенсивность фотосинтеза зависит от напряженности света.

При некоторой достаточно низкой напряженности света между фотосинтезом и дыханием создается такое соотношение, когда количество углекислого выделяемого при дыхании, сравнимо с чеством, потребляемым при фотосинтезе.

Такую силу света называют компенсационной точкой (пунктом). У световых растений компенсационный пункт соответствует более высокой освещенности, у теневых — слабой. Находясь под влиянием света разной напряженности и разного состава, растения несут как бы отпечаток этого в своем строении.[ …]

Углеводы являются основным продуктом фотосинтеза, на их основе в процессе обмена веществ в растительном организме формируются белки, жиры, нуклеиновые кислоты и другие соединения.

Углеводы — основной источник для аэробного и анаэробного дыхания клеток; источник энергии для возобновления вегетации. Обычно растение содержит большой набор разнообразных углеводов. В процессе вегетации соотношение растворимых и нерастворимых форм изменяется.

В молодых растениях преобладают моно- и дисахариды, в период созревания увеличивается содержание крахмала, целлюлозы, т.е. нерастворимых форм.[ …]

Углеводы являются основным продуктом фотосинтеза, на их основе в процессе обмена веществ в растительном организме формируются белки, жиры, нуклеиновые кислоты и другие соединения.

Углеводы — основной источник для аэробного и анаэробного дыхания клеток; источник энергии для возобновления вегетации. Обычно растение содержит большой набор разнообразных углеводов. В процессе вегетации соотношение растворимых и нерастворимых форм изменяется.

Особенно интересна исследуемая теперь возможность использовать соотношение между желтыми пигментами, каротиноидами, и зелеными пигментами, хлорофиллами, как показатель отношения гетеротрофного метаболизма к автотрофному в целом сообществе.

Когда в сообществе фотосинтез превышает дыхание, доминируют хлорофиллы, а при усилении дыхания сообщества увеличивается содержание каротиноидов. Это сразу замечаешь, глядя на ландшафт с самолета: быстро растущие молодые хлеба или леса кажутся ярко-зелеными в сравнении с желто-зеленым цветом более старых лесов или спелых хлебов.

Маргалеф (1961, 1967) обнаружил, что отношение оптической плотности ацетоновых экстрактов пигментов при длине волны 430 нм к плотности при длине волны 665 нм дает простое отношение содержания желтых пигментов к зеленым, которое обратно пропорционально отношению Р/Я в культурах и планктонных сообществах.

Так, это отношение обычно мдло (например, от 1 до 2) для молодых культур или во время весеннего «цветения» водоемов, когда дыхание невелико, и высоко (3—5) в стареющих культурах или в планктонных сообществах в конце лета, I когда дыхание относительно усиленное.[ …]

Для поддержания жизни на Земле в ее современных формах очень еэжно определенное соотношение кислорода и диоксида углерода в атмосфере.

До появления жизни на Земле атмосфера ее соо-тояла в основном из метана, аммиака, водяных паров и водорода. Когда первые водные растения стали использовать солнечный свет в качестве источника энергии, они начали выделять кислород, часть которого освобождалась из океана и накапливалась в атмосфере.

Постепенно большая часть водорода первичной атмосферы улетучилась в космическое пространство, а углерод, входящий в состав метана, и азот аммиака ассимилировались растениями, и их место в атмосфере занял кислород, высвобождающийся в процессе фотосинтеза.

Сложившееся соотношение кислорода и диоксида углерода в атмосфере Земли поддерживается в настоящее время за счет создания из диоксида углерода и воды фотосинтезирующими организмами около 100 млрд.

т органических веществ в год ( что сопровождается выделением кислорода) и окислением около того же количества органических веществ в результате дыхания жрвых организмов ( с превращением в С02 и HgO).[ …]

Действительно известно, что начальные перестройки в физиологии целого организма (соотношение процессов транспирации, фотосинтеза, водного обмена и др.) в экстремальных условиях проявляются по-разному в зависимости от конкретного воздействия.

О том же говорят наблюдения на клеточном уровне (Семихатова, 1990). Анализ реакции дыхательного аппарата клетки на изменение экологической обстановки показывает, что общий уровень дыхания, цианид-резистентное поглощение 02, энергетическая эффективность дыхания изменяется в неодинаковой степени при повышении и понижении температуры, засолении и водном дефиците.[ …]

Отдельные растения могут компенсировать влияние растительноядных организмов различными способам,и.

Во-первых, удаление листьев с растения может уменьшить затенение других листьев 1И вследствие этого привести к повышению у них интенсивности фотосинтеза.

Оцените статью
Кислород
Добавить комментарий