ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 —

ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 - Кислород

Бензины

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

БЕНЗИНЫ (франц. benzine, от араб. любан джави — яванское благовоние), смеси разл. углеводородов, выкипающие в пределах 30-205 °С. В состав бензинов, кроме углеводородов (парафиновых, олефиновых, нафтеновых и ароматических), могут входить примеси-серо-, азот- и кислородсодержащие соединения.

Бензины готовят смешением компонентов, получаемых в осн. переработкой нефти — прямой перегонкой (т.наз. прямогонный бензин), а также крекингом, риформингом, коксованием и др. Применяют гл. обр. в кач-ве горючего для двигателей внутр. сгорания с принудительным воспламенением (карбюраторных и с непосредственным впрыском).

Небольшие кол-ва бензинов используют как р-рители и промывочные жидкости (см. Бензины-растворители).

Т-ра замерзания бензинов ниже — 60 °С, т. всп. ниже 0°С. При концентрации паров бензинов в воздухе 74-123 г/м3 образуются взрывчатые смеси. (низшая) 41-44 МДж/кг; Ср 2,0-2,1 кДж/(кг*К); 0,50-0,65 мм2/с (20°С); плотн. 0,700-0,780 г/см3 (20 °С); среднее значение коэф. диффузии для паров бензинов при атмосферном давлении и 20 °С 9,1 мм2/с. Осн. эксплуатац. характеристики бензинов, применяемых как горючее, — испаряемость, горючесть, воспламеняемость, хим. стабильность, склонность к образованию отложений, коррозионная активность.

Испаряемость в наиб. мере определяется фракционным составом и давлением насыщ. паров. По этим показателям бензинв могут существенно различаться, тогда как показатели, влияющие на испаряемость (напр., коэф.

диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность), как правило, для всех бензинов очень близки. От фракционного состава и давления насыщ. паров бензинов зависят скорость прогрева двигателя, износ его деталей, расход горючего, а также такие эксплуатац.

характеристики, как возможность пуска двигателя при низких т-рах, склонность к образованию паровых пробок в системе питания, приемистость (см. ниже).

В СССР производятся автомобильные бензины зимнего и летнего видов, различающиеся по содержанию низкокипящих фракций, и авиационные бензины. Последние предназначены для поршневых двигателей самолетов и содержат относительно мало низкокипящих углеводородов, чтобы исключить возможность образования паровых пробок при полете на разной высоте (см. табл.).

ОПТИМАЛЬНЫЕ ПОКАЗАТЕЛИ ФРАКЦИОННОГО СОСТАВА И ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ БЕНЗИНОВ

Показатель Автомобильные бензины Авиационные бензины
летние зимние
Т-ра начала перегонки, не ниже, °С 35 не нормируется 40
Т-ра (°С), при к-рой перегоняются: 10% продукта 70 55 75-82
50% продукта 115 100 105
90% продукта 180 160 145
Т-ра конца кипения, не выше, °С 195 185 180
Давление насыщ, паров при 38°С, кПа

Бензины. требования к ним. физико-химические свойства автомобильных бензинов

Отечественные легковые автомобили и автобусы, а также большинство грузовых автомобилей имеют карбюраторные двигатели. Топливом для этих двигателей служит автомобильный бензин.

  • Основные технико-экономические требования к бензинам сводятся к следующему:
  • бензин должен обеспечивать безотказную работу автомобильного двигателя на всех режимах и во всех практически встречающихся условиях эксплуатации;
  • двигатель должен развивать предусмотренную для него мощность при минимальном расходе бензина;
  • бензин должен обеспечивать минимальные износы двигателя, трудовые и материальные затраты на ремонт и техническое обслуживание двигателя;
  • качество бензина не должно ухудшаться при транспортировании, хранении и использовании;
  • обращение с бензином не должно вызывать повышенной опасности для персонала, занимающегося эксплуатацией, техническим обслуживанием и ремонтом автомобилей.
  • Исходя из названных выше требований устанавливается соответствие бензина данным конкретным условиям и возможность его применения.
  • Физико-химические свойства
  • Автомобильные бензины в силу своих физико-химических характеристик должны обладать следующими свойствами:
  • Однородность смеси;
  • Плотность топлива — при 20 «С должна составлять 690.750 кг/м;

Небольшую вязкость — с ее увеличением затрудняется протекание топлива через жиклеры, что ведет к обеднению смеси. Вязкость в значительной степени зависит от температуры. При изменении температуры от 40 до — 40°С расход бензина через жиклер меняется на 20.30%;

Испаряемость — способность переходить из жидкого состояния в газообразное. Автомобильные бензины должны обладать такой испаряемостью, чтобы обеспечивались легкий пуск двигателя (особенно зимой), его быстрый прогрев, полное сгорание топлива, а также исключалось образование паровых пробок в топливной системе;

Давление насыщенных паров — чем выше давление паров при испарении топлива в замкнутом пространстве, тем интенсивнее процесс их конденсации.

Стандартом ограничивается верхний предел давления паров летом — до 670 ГПа и зимой — от 670 до 930 ГПа.

Бензины с более высоким давлением склонны к образованию паровых пробок, при их использовании снижается наполнение цилиндров и теряется мощность двигателя, увеличиваются потери от испарения при хранении в баках автомобилей и на складах;

Низкотемпературные свойства — способность бензина выдерживать низкие температуры;

Сгорание бензина. Под «сгоранием» применительно к автомобильным двигателям понимают быструю реакцию взаимодействия углеводородов топлива с кислородом воздуха с выделением значительного количества тепла. Температура паров при горении достигает 1500.2400°С.

Физическое свойство бензина

Физическое свойство бензина, зависит от качества исходного продукта. Так как в основе бензина лежат нефтепродукты, химическое строение которых на основе фенольного кольца, во многом определяет физические свойства.

Разные сорта бензинов имеют разные показатели: температуру горения и замерзания, а также плотность.

Обычно эти показатели изменяются в следующих границах: предел кипения 33-205°С, температура замерзания ниже — 60°С, плотность 700-780 кг/м3.

Кроме того, важны такие физические свойства бензина, как температура вспышки (ниже 0°С) и концентрация паров. При концентрация паров в воздухе 70-120 г/м3 образуются взрывчатые смеси.

Именно физические свойства бензина создают дополнительные условия для признания автомобиля техническим средством повышенной опасности. Однако так привычные нам взрывы бензобаков, которые показывают чуть ли не во всех боевиках, случаются в реальность очень редко.

Еще одно неприятное физическое свойство бензина — легковоспламеняемость. Но именно благодаря этому свойству мы и можем использовать бензин в качестве топлива.

К слову сказать, такие альтернативные виды топлива как водород воспламеняются еще легче, чем и создают проблему их массового использования в автомобилях. Плюс к этому водород еще и легко взрывается.

И если бы мы пользовались машинами с водородными двигателями, то ситуации из фильмов с повальными взрывами топливных баков перенеслись бы в реальность.

Физическое свойство бензина, может зависеть не только от химической структуры но определяться еще и наличием примесей, которые переходят в бензин из нефтепродуктов. При высоком количестве примесей качество бензинов понижается. Бензин с большим количеством примесей влияет не только на собственные свойства бензина, но и на работу двигателя автомобиля.

Именно благодаря физическим свойствам бензина, мы можем использовать его в качестве топлива, однако при нарушении правил изготовления, распространения или использования и хранения бензина те самые физические свойства, которые позволяют бензину быть топливом могут оказаться опасными, как для техники, так и для человека.

Гост р 54282-2022 бензин. определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (переиздание) от 27 декабря 2022 —

     
ГОСТ Р 54282-2022

ОКС 75.160.20

Дата введения 2022-07-01

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИ НП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2022 г. N 1118-ст

4 Настоящий стандарт идентичен стандарту АСТМ Д 5599-00 (2005)* «Метод определения оксигенатов в бензине газовой хроматографией с селективным пламенно-ионизационным детектированием по кислороду» [ASTM D 5599-00 (2005) «Standard test method for determination of oxygenates in gasoline by gas chromatography and oxygen selective flame ionization detection», IDT].

________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ Р 1.5-2022 (пункт 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов АСТМ соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Август 2022 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2022 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1.1 Настоящий стандарт устанавливает метод газовой хроматографии для количественного определения органических оксигенатов в бензине, имеющем температуру конца кипения не выше 220°С, и собственно оксигенатов, имеющих температуру конца кипения до 130°С включительно. Метод применим при содержании оксигенатов в диапазоне от 0,1% масс., до 20% масс.

1.2 Настоящий стандарт применяют для определения массовой концентрации каждого соединения оксигената, присутствующего в бензине. Для калибровки необходима идентификация каждого определяемого оксигената. Однако детектор по кислороду, используемый в настоящем методе, выдает отклик, пропорциональный массе кислорода. Настоящим методом можно определить массовую концентрацию кислорода, содержащегося в любом соединении оксигената испытуемого образца, если оксигенат невозможно идентифицировать. Общее содержание кислорода в бензине можно определить по сумме точно определенных индивидуальных кислородсодержащих соединений. Суммированную площадь других некалиброванных или неизвестных кислородсодержащих соединений, присутствующих в образце, можно перевести в массовую концентрацию кислорода и суммировать ее с концентрацией кислорода известных кислородсодержащих соединений.

1.3 Значения, установленные в единицах СИ, являются стандартными. Значения в скобках приводятся только для информации.

1.4 Применение настоящего стандарта связано с использованием в процессе испытания опасных материалов, операций и оборудования. В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил техники безопасности и охраны труда, а также за определение законодательных ограничений до применения настоящего стандарта.

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все изменения).

ASTM D 1744, Test method for determination of water in liquid petroleum products by Karl Fischer reagent (Метод определения воды в жидких нефтепродуктах с использованием реактива Карла Фишера)

ASTM D 4175, Terminology relating to petroleum, petroleum products, and lubricants (Терминология, относящаяся к нефти, нефтепродуктам и смазочным материалам)

ASTM D 4307, Practice for preparation of liquid blends for use as analytical standards (Руководство по приготовлению жидких смесей для использования в качестве аналитических стандартов)

ASTM E 594, Practice for testing fl ame ionization detectors used in gas or supercritical fluid chromatography (Руководство по пламенно-ионизационным детекторам, используемым в газовой или сверхкритической жидкостной хроматографии)

ASTM E 1064, Test method for water in organic liquids by coulometric Karl Fischer titration (Определение воды в органических жидкостях методом кулонометрического титрования Карла Фишера)

ASTM E 1510, Practice for installing fused silica open tubular capillary columns in gas chromatographs [Руководство по газохроматографическим кварцевым колонкам с открытыми трубчатыми капиллярами, заполненными плавленым кварцем (двуокисью кремния)]

3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 независимые эталонные стандарты (independent reference standards): Образцы оксигенатов для калибровки, которые приобретают или готовят из материалов независимо от стандартных образцов контроля качества и используют для установления точности межлабораторных испытаний.

3.1.2 оксигенат (oxygenate): Кислородсодержащее соединение, такое как спирт или простой эфир, которое может быть использовано как топливо или добавка к топливу (АСТМ Д 4175).

3.1.3 стандартные образцы проверки контроля качества (quality control check standards): Образцы оксигенатов для калибровки, используемые для установления повторяемости межлабораторных испытаний.

4.1 Внутренний стандарт немешающего оксигената, например 1,2-диметоксиэтана (диметилового эфира этиленгликоля) добавляют в образец бензина в требуемом количестве. Представительную аликвоту образца и внутренний стандарт вводят в газовый хроматограф, оснащенный капиллярной колонкой, обеспечивающей разделение оксигенатов. Углеводороды и оксигенаты элюируют из колонки, но только оксигенаты определяют с использованием пламенно-ионизационного детектора по кислороду (OFID). Описание детектора представлено в разделе 6.

4.2 Калибровочные смеси применяют для определения времени удерживания и относительных коэффициентов отклика (по массе) для оксигенатов, представляющих интерес. Предлагаемые калибровочные материалы указаны в 8.2.

4.3 Площадь пика каждого оксигената в бензине измеряют относительно площади пика внутреннего стандарта.

Примечание — Было установлено, что если 1,2-диметоксиэтан используют как подходящий внутренний стандарт, другие оксигенаты могут быть использованы при условии, что они отсутствуют в образце и не мешают определению соединений, представляющих интерес.

5.1 Для бензина, полученного смешиванием, важно определение органических кислородсодержащих соединений. Спирты, простые эфиры и другие оксигенаты добавляют в бензин для увеличения октанового числа и уменьшения выбросов монооксида углерода из выхлопной трубы. Они должны быть добавлены в надлежащей концентрации и пропорциях, чтобы избежать фазового разделения бензина и проблем в работе двигателя.

5.2 Настоящий метод испытания обеспечивает достаточную селективность по кислороду относительно углеводородов и чувствительность, позволяющую определять оксигенаты в образцах бензина без помех, исходящих от углеводородной матрицы.

6.1 Система селективного определения органически связанного кислорода включает реактор разложения, реактор гидрогенизации (метанайзер) и пламенно-ионизационный детектор (FID). Реактор разложения, соединенный непосредственно с газохроматографической капиллярной колонкой, состоит из платино-родиевой (Pt/Rh) капиллярной трубки. Монооксид углерода (СО) образуется из соединений, содержащих кислород, по следующему уравнению реакции

ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 -.                                   (1)

6.2 Избыточный слой сажи (кокса) образуется в платинородиевой трубке реактора разложения в результате введения углеводородов, входящих в состав образца, или при наличии углеводорода (например, пентана или гексана), ускоряющего разложение, или и того и другого.

Слой сажи (кокса) ускоряет реакцию разложения и подавляет чувствительность по углеводородам.

6.3 Монооксид углерода, образующийся в реакторе разложения, превращается в метан в реакторе гидрогенизации по следующему уравнению реакции

ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 -.                                                 (2)

Метан впоследствии определяют с помощью FID.

6.4 Реактор гидрогенизации (метанайзер) состоит из короткой открытой стеклянной капиллярной трубки, покрытой внутри оксидом алюминия с адсорбированным никелевым катализатором с пористым слоем (PLOT), или трубки из нержавеющей стали, содержащей катализатор на никелевой основе. В зависимости от конструкции приборов его устанавливают внутри или перед FID, и он работает в пределах значений температуры от 350°С до 450°С.

Примечание — Бензины с высоким содержанием серы могут вызывать потери чувствительности детектора, в связи с чем ограничивают число образцов, которые могут быть проанализированы перед тем, как катализатор будет нуждаться в замене.

7.1 Газовый хроматограф

Можно применять любой газовый хроматограф, имеющий следующие рабочие характеристики:

7.1.1 Программатор температуры колонки. Хроматограф, осуществляющий линейное программирование температуры в диапазоне, достаточном для разделения интересующих соединений.

7.1.2 Система ввода образца. Любая система, способная осуществлять ввод 0,1-1,0 мкл представительного жидкого образца в устройство газового хроматографа со сбросом. При этом можно использовать микрошприцы, автоматические пробоотборники и вентили для отбора жидких проб. Инжектор со сбросом, способный точно регулировать сброс в диапазоне 10:1-500:1.

7.1.3 Регулирование потоков газа-носителя и газов детектора. Постоянный контроль потоков газа-носителя и газов детектора является важнейшим фактором при оптимизации и последовательном выполнении анализа, что достигается использованием регуляторов давления потоков газа-носителя, водорода и воздуха.

Скорости газовых потоков измеряют любыми подходящими способами.

Давление газа, поступающего в хроматограф, должно быть не менее чем на 70 кПа (10 psig) больше, чем давление регулируемого газа, поступающего в хроматограф для компенсации противодавления. Приемлемым является давление 550 кПа (80 psig).

7.2 Детекторная система OFID

Система OFID состоит из реактора разложения, реактора гидрогенизации (метанайзера) и пламенно-ионизационного детектора (FID). Схема типичной системы OFID показана на рисунке 1.

7.2.1 Детектор должен соответствовать или превосходить требования АСТМ Е 594 при работе в обычном режиме FID, установленном изготовителем.

7.2.2 В режиме работы системы OFID детектор должен соответствовать или превосходить следующие требования:

a) линейность, равную или большую чем 10;

b) чувствительность по кислороду менее 100 ррm масс. (1 ng O/s);

c) селективность по кислородсодержащим соединениям, более чем в 10 превосходящую селективность по углеводородам;

d) отсутствие помех от соэлюирующих соединений при вводе 0,1-1,0 мкл образца;

e) эквимолярный отклик по кислороду.

1 — капиллярная колонка; 2 — газ-носитель (ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 -, если обозначено); 3 — образец ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 -, если обозначено); 3 — образец ГОСТ Р 54282-2010 Бензин. Определение оксигенатов методом газовой хроматографии с селективным пламенно-ионизационным детектированием по кислороду (Переиздание) от 27 декабря 2010 -; 4 — реактор разложения; 5 — реактор гидрогенизации (метанайзер); 6 — FID; 7 — электрометр; 8 — воздух; 9 — водород

Рисунок 1 — Схема системы OFID

7.3 Колонка

Открытая кварцевая колонка длиной 60 м, внутренним диаметром 0,25 мм, содержащая жидкую связанную фазу метилсилоксана толщиной пленки 1,0 мкм.

Могут быть использованы любые эквивалентные колонки, обеспечивающие разделение всех интересующих оксигенатов.

7.4 Интегратор

Используют электронное устройство интегрирования или компьютер. Устройство и оборудование должны обладать следующими свойствами:

7.4.1 Графическое представление хроматограмм.

Механические примеси дизельного топлива

Основная масса топлива добывается из сернистых нефтей. Основное количество сернистых соединений при переработке нефти перегоняется вместе с фракциями, которые идут на получение дизельного топлива. После этого снижение количества серы происходит более дорогостоящими и сложными способами.

Самый распространенный способ очистки – гидроочистка, поэтому получение малосернистого дизеля не выгодно для производителя, так как весьма затруднено. Но с другой стороны при повышенном содержании серы очень быстро происходит износ двигателя и топливной системы, которые подвержены сернистой коррозии и окислению масла.

Статистика гласит, если содержание серы увеличить с 0,2 до 0,5%, что является пределом в соответствии с ГОСТ 305-82, то износ двигателя возрастет на четверть.

Высокофорсированные современные дизели гораздо больше подвержены сернистой коррозии, нежели старых конструкций. В новых моделях образуется большее количество твердого нагара.

Поэтому увеличивают количество моющих присадок в моторном масле. Если работа происходит на высокосернистых топливах, то и масло окисляется быстро, оно требует частой замены.

По сравнению с европейскими инструкциями срок службы масла в наших широтах стоит сокращать в два раза.

Сернистые соединения ДТ условно делят на активные и неактивные. Активные вызывают коррозию при контакте с металлом, это свободная сера, меркаптаны, сероводород.

Неактивные не вызывают коррозии, это сульфиды, дисульфиды и т.д.

Но ряд исследований установил, что любые сернистые соединения в дизельном топливе при попадании в двигатель становятся активными, а, следовательно – вызывают коррозию цилиндропоршневой системы дизеля.

В период запуска и прогрева двигателя из продуктов сгорания происходит наибольшее образование воды и конденсация. Также конденсат выступает при понижении температуры охлаждающей воды, а также, если дизель работает на малых оборотах.

Частая работа на режимах переменных нагрузок или же при холостом ходе является характерной особенностью дизелей маневровых и магистральных тепловозов. Именно данные режимы работы чаще всего влекут за собой коррозию, лакоотложение и нагарообразование.

Поэтому если для работы двигателей используют сернистое ДТ, то следует принимать меры по минимализации таких условий труда в холодном состоянии, а также с низкой температурой охлаждающих жидкостей.

К примеру, после опытных испытаний двигателей тепловозов ТЭЗ дизеля с содержанием серы 0,8-1% и масла Д-11 (ГОСТ 5304-54) без использования присадок было установлено, что при сравнении с использованием во время эксплуатации малосернистого топлива с содержанием серы 0,1-0,2% объем ремонта поршней увеличивается в четыре раза, поршневых колец – в 1,2-2 раза, цилиндровых втулок почти в 2 раза, шатунных и коренных вкладышей – в 1,4-1,7 раза. Кроме этого, увеличивается еще и нагароотложение, масло окисляется и т.д.

В последние годы проводились исследования по снижению процентного содержания серы в топливе дизелей тепловозов на железнодорожном транспорте, разрабатывалось дизельное масло с присадками для нейтрализации влияния серы. Результатом исследований стал ГОСТ 10489-63 на топливо с серой в 0,5% для тепловозных дизелей.

У нас также выпускается высококачественное топливо по ТУ 38.401-58-110-94, содержание серы в котором не превышает 0,1%.

Но самым страшным врагом дизеля по праву считается вода. Если она присутствует в топливе, то это быстро приведет к выводу из строя топливного насоса. Согласно ГОСТу никакой воды в топливе быть не должно. Но она все же появляется из-за неправильных условий хранения и транспортировки ДТ, а также из-за повышенной гигроскопичности сырья.

Практически та же история происходит и с механическими примесями. Они появляются в топливе из-за неправильной транспортировки. Поэтому даже импортное дорогое дизтопливо не лишено загрязнений. Но вода и грязь все же не так страшны как сера.

Как же бороться с этими неудобствами? Следует чаще мыть топливный бак и, если позволяет конструкция, сливать отстой из фильтра. Это будет лучшей профилактикой неисправностей двигателя, нежели применение присадок.

Топливо для двигателей скоростных автомобилей

Топливо, применяемое для высокофорсированных двигателей, должно обладать следующими свойствами:

  1. Стойкостью в отношении детонации, чтобы обеспечить возможность работы двигателя с высокими степенями сжатия и давлениями наддува.
  2. Высокой теплотворностью.
  3. Хорошей испаряемостью.

Качество того или иного топлива зависит от его элементарного состава и химической структуры. Большинство топлив представляет собою углеводородные соединения, а в состав спиртов входит также и кислород.

Автомобильные и авиационные бензины состоят из различных углеводородов, относящихся даже к различным группам.

Антидетонационные свойства топлива. Антидетонационная стойкость топлива для высокофорсированного двигателя приобретает в настоящее время особенно большое значение. Детонация представляет собою ненормальный процесс сгорания, протекающий с очень высокими скоростями (около 2000—3000 м/сек).

Внешними признаками детонации служит появление резкого металлического стука, перегрев двигателя, неполное сгорание топлива, заметное по появлению черного дыма. Появление детонации вызывает уменьшение мощности двигателя и создает резко возрастающие нагрузки на детали шатунно-кривошипного механизма.

Склонность топлива к детонации усиливается с повышением давления и температуры в копне хода сжатия.

Так как повышение давления в конце хода сжатия является одним из основных условий повышения мощности двигателя, то у двигателей без нагнетателей повышают степень сжатия, а у двигателей с нагнетателями — давление наддува. Пределом повышения давления в конце хода сжатия является возможность возникновения детонации, в связи с чем особенное значение приобретает антидетонационная стойкость топлива, которую повышают различными способами.

Появление детонации зависит также от условий работы двигателя. С увеличением числа оборотов коленчатого вала двигателя (а следовательно, и с увеличением скорости поршня) при постоянном открытии дросселя детонация уменьшается, так как с увеличением числа оборотов снижаются давления и температуры процесса сгорания.

Стойкость топлива в отношении детонации определяется его октановым числом при работе двигателя на обедненной смеси.

Октановое число является условной величиной, показывающей стойкость данного топлива по отношению к детонации по сравнению со смесью двух углеводородов гептана и изооктана.

Процентное содержание изооктана в смеси с гептаном, дающей такую же антидетонационную стойкость, как данное топливо, является для последнего его октановым числом.

Изооктан является наиболее стойким в отношении детонации углеводородом, поэтому чем больше его содержание в смеси, тем выше ее антидетонационные свойства. Следовательно, топлива имеют тем большую стойкость в отношении к детонации, чем выше их октановое число.

В табл. 14 приведен элементарный состав некоторых углеводородов и спиртов и даны их октановые числа.

Таблица 14
Элементарный состав некоторых углеводородов и их октановые числа
Наименование углеводорода (или спирта)ГруппаХимическая формулаЭлементарный составОктановое числоCНO
МетанПарафиноваяCH475,025,0125
Этан»C2H680,020,0125
Пропан»C3H881,818,2125
Бутан»C4H1082,817,291
Гексан»C6H1483,716,359
Гептан»C7H1684,016,0
Октан»C8H1884,215,8—19
Изооктан»C8H1884,516,0100
БензолАроматическаяC6H692,37,796
Толуол»C7H891,48,6106
Ксилол»C8H1090,69,4100
Спирт этиловыйСпиртоваяC2H5OH52,213,034,8100
Спирт метиловый»CН3OH37,512,550,0100

Обычные автомобильные бензины имеют в своем составе различные углеводороды. Качество автомобильных бензинов определяется ГОСТ 2084-48 (табл. 15).

Таблица 15
Бензины автомобильные (по ГОСТ 2084-48)
Физико-химические свойстваМарки бензинаA-66А-70А-74
Октановое число667074
Содержание этиловой жидкости Р-9 в 1 кг бензина (в мл), не более1,51,5Отсутствует
Фракционный состав:
температура начала перегонки (в °), не ниже35
10% перегоняется при температуре (в °), не выше797970
50% перегоняется при температуре (в °), не выше145145105
90% перегоняется при температуре (в °), не выше195195165
Конец кипения (в °), не выше205205180
Остаток в колбе (в %), не более1,51,51,5
Остаток и потери (в %) в сумме, не более4,54,52,5
Упругость паров по Рейду (в мм рт. ст.), не более500500500
Содержание фактических смол в 100 мл бензина (в мг), не более10106
Индукционный период (в мин.), не менее240240600
Содержание серы (в %), не более0,150,150,1
Проба на медную пластинкуВыдерживает
Содержание водорастворимых кислот и щелочейОтсутствует
Содержание механических примесей и воды»

Как видно из приведенных таблиц, обычные автомобильные бензины имеют относительно невысокие октановые числа.

Для улучшения антидетонационных качеств бензинов к ним добавляют специальные антидетонаторы. Наиболее сильно действующим антидетонатором является тетраэтиловый свинец, его действие в 600 раз сильнее действия бензола.

В чистом виде тетраэтиловый свинец не применяется, а обычно используется в виде так называемой этиловой жидкости марки Р-9.

В состав этиловой жидкости входят компоненты, предотвращающие отложение свинца на клапанах, электродах свечи и стенках камеры сгорания.

Присадка незначительных (не более 3 см³ на 1 кг бензина) количеств этиловой жидкости намного улучшает антидетонационные свойства бензинов. Дальнейшее увеличение количества этиловой жидкости в присадке не дает заметного улучшения антидетонационной стойкости бензина.

В табл. 16 приведены данные по результатам присадки этиловой жидкости.

Таблица 16
Октановые числа бензинов с присадкой этиловой жидкости (по Забрянскому)
Наименование топливаОктановые числа при добавлении этиловой жидкости, см³/кг0123
Бакинский авиационный бензин Б-5956757982
Бакинский авиационный бензин Б-7073828689
Бакинский авиационный бензин Б-7878869092
30% бензола 70% Б-70778991
30% алкилбензола 70% Б-5973848790

Для двигателей спортивных и гоночных автомобилей широкое применение имеют бензино-бензольные смеси, обладающие довольно высокими антидетонационными свойствами. При этом бензол должен быть высокого качества; лучше всего использовать авиационный бензол нефтяного происхождения, так называемый пиро-бензол.

В табл. 17 приведены октановые числа смесей бензина А-70 с авиационным бензолом.

Для высокофорсированных двигателей применяют спиртовые смеси, обладающие высокой антидетонационной стойкостью, а также некоторыми другими положительными свойствами, о которых будет сказано ниже. В зависимости от степени форсировки двигателя применяют различный состав этих смесей. Часто применяют тройную смесь, состоящую из трех равных объемных частей бензина, бензола и спирта.

Таблица 17
Октановые числа различных бензино-бензольных смесей
Содержание бензина, %Содержание бензола, %Октановое число смеси
802073
703075
604078
505082
406085
307088
208094
158597

Теплотворность топлива. Под теплотворностью топлива понимается количество тепла, выделяемое при полном сгорании 1 кг топлива. Чем выше теплотворность топлива, тем большее количество работы можно получить при его сгорании в цилиндрах двигателя.

Но в цилиндры двигателя топливо поступает в смеси с воздухом, поэтому эффективность работы двигателя зависит от теплотворности топливовоздушной смеси.

Некоторые топлива, имеющие небольшую теплотворность, но требующие для своего полного окисления небольшого количества воздуха, обладают достаточно высокой теплотворностью топливовоздушной смеси.

В табл. 18 приведены низшие теплотворности топлив и соответствующих топливовоздушных смесей.

Если же взять теплотворность 1 м³ топливовоздушной смеси (при 15° и нормальном давлении), то она будет примерно одинаковой для различных видов топлив и равной около 820—850 кал/м³.

Как видно из табл. 17, метиловый спирт, имеющий наименьшую теплотворность, дает высокую теплотворность топливовоздушной смеси. При работе на метиловом спирте от двигателя можно получить высокую мощность.

Расход топлива обратно пропорционален теплотворности и резко возрастает при использовании таких топлив, как спирт; поэтому применение топлив с низкой теплотворностью целесообразно лишь в некоторых случаях.

Основным компонентом топливных смесей для большинства двигателей скоростных автомобилей является бензин, обладающий наивысшей теплотворностью.

Таблица 18
Низшая теплотворность топлив и топливовоздушных смесей
ТопливоТеплотворностьТеоретически необходимоеколичество воздуха (в кг)для сгорания 1 кг топливаТоплива, ккал/кгТопливовоздушной смеси, ккал/м³
Бензин1060083014,9
Бензол980084313,4
Этиловый спирт62008188,4
Метиловый спирт53208156,53

Испаряемость топлива. Испаряемость оценивается по температуре, при которой выкипает определенное количество топлива (в % от нагреваемого объема).

Температура, при которой выкипает 10% топлива, характеризует его пусковые качества; температура, соответствующая выкипанию 50% топлива, характеризует его способность обеспечить двигателю приемистость; температура выкипания 90% топлива определяет его качества с точки зрения разжижения смазки.

В табл. 15 приведены данные по испаряемости бензинов основных марок.

Испаряемость топлива влияет на смесеобразование. Частицы неиспаренного топлива осаждаются на стенках впускного трубопровода.

Смесь с неиспаренными частицами топлива плохо сгорает, более склонна к детонации; частицы жидкого топлива, попадая на стенки цилиндров, смывают смазку и способствуют появлению коррозии на металлической поверхности.

Поэтому топлива для двигателей гоночных автомобилей должны обладать хорошей испаряемостью.

Но на испарение топлива затрачивается тепло топливовоздушной смеси. При этом температура ее понижается, а плотность увеличивается. Температура смеси понижается тем больше, чем выше .

скрытая теплота испарения данного топлива.

Основные автомобильные топлива имеют следующую скрытую теплоту испарения: бензин 75 ккал/кг, бензол 95 ккал/кг, этиловый спирт 200 ккал/кг, метиловый спирт 260 ккал/кг.

Спирты, имеющие наибольшую скрытую теплоту испарения, больше других топлив понижают температуру топливовоздушной смеси.

Низкая температура топливовоздушной смеси способствует внутреннему охлаждению цилиндров двигателя. Сравнительно холодная смесь, поступая в цилиндры, отнимает тепло от наиболее нагретых поверхностей и уменьшает температуру в конце хода сжатия. Более низкая температура смеси в конце хода сжатия уменьшает опасность появления детонации.

Наибольшее внутреннее охлаждение цилиндров двигателя дает применение спирта, так как он имеет наиболее высокую скрытую теплоту испарения. Большое количество спирта в смеси содействует лучшему охлаждению двигателя.

Пределы воспламеняемости топливовоздушной смеси устанавливаются по ее составу, определяемому коэффициентом избытка воздуха.

Низшим пределом воспламеняемости для большинства топливовоздушных смесей является богатая смесь с α = 0,4 — 0,5, высший предел воспламеняемости соответствует бедной смеси с α = 1,15— 1,2.

Для двигателей гоночных автомобилей применяют исключительно обогащенные смеси, при которых двигатель может развить большую мощность. Поэтому необходимо обеспечить надежное воспламенение смеси при малых значениях α.

Наилучшие результаты в этом случае дает спирт, обеспечивающий хорошую воспламеняемость от электрической искры при изменении состава топливовоздушной смеси в широком диапазоне.

Нагарообразование. Крекинг-бензины и каменноугольный бензол дают большое образование нагара и смолистых отложений. Поэтому их применение в двигателях гоночных автомобилей крайне нежелательно. Наиболее полное сгорание без образования нагара дает спирт.

Стабильность топлива. Крекинг-бензин отличается также плохой стабильностью и изменяет свои качества при более или менее длительном хранении.

Стабильность имеет большое значение для топливных смесей с содержанием спирта, так как при низкой температуре они имеют склонность к расслаиванию.

Для сохранения стабильности спиртовых смесей в них добавляют специальные стабилизаторы, как, например, ацетон (до 10%), бутиловый спирт (до 15%).

Роль стабилизатора выполняет также бензол, вследствие чего тройные смеси (бензин-бензол-спирт) более стойки против расслаивания.

Химический состав бензина аи 92, 95, 98 — из чего состоит бензин?

В состав бензина входят различные химические элементы и соединения: легкие углеводороды, сера, азот, свинец. Для улучшения качества топлива к нему добавляют различные присадки. Как таковую химическую формулу бензина написать невозможно, поскольку химический состав во многом зависит от места добычи сырья — нефти, от способа производства и от присадок.

Однако, химический состав того или другого вида бензина не оказывает какого-либо значительного воздействия на протекание реакции сгорания топлива в двигателе автомобиля.

Как свидетельствует практика, качество бензина во многом зависит от места добычи. Например, та нефть, которую добывают в России, по своим качествам гораздо хуже, чем нефть из Персидского залива или того же Азербайджана.

Процесс перегонки нефти на российских нефтеперерабатывающих заводах — очень сложный и дорогостоящий, при этом конечный продукт не отвечает экологическим нормам Евросоюза. Именно поэтому бензин в России такой дорогой. Для улучшения его качества используются различные способы, но все это влияет на стоимость.

Нефть из Азербайджана и Персидского залива содержит меньшее количество тяжелых элементов, соответственно и производство топлива из нее обходится дешевле.

В начале двадцатого века бензин получали путем ректификации — перегонки нефти. Грубо говоря, ее нагревали до определенных температур и нефть делилась на различные фракции, одной из которых был бензин.

Такой способ получения был не самым экономным и экологичным, поскольку все тяжелые вещества из нефти попадали в атмосферу вместе с выхлопными газами авто.

В них содержалось большое количество свинца и парафинов из-за чего страдала и экология и двигатели тогдашних автомобилей.

Позже были найдены новые способы получения бензина — крекинг и риформинг.

Очень долго описывать все эти химические процессы, но приблизительно это выглядит так. Углеводороды — это «длиннющие» молекулы, основными элементами которых являются кислород и углерод.

Во время нагревания нефти цепочки этих молекул разрываются и получаются более легкие углеводороды. Практически все фракции нефти используются, а не утилизируются, как в начале прошлого века.

Перегоняя нефть способом крекинга, мы получаем бензин, дизельное топливо, моторные масла. Из отходов перегонки получают мазут, трансмиссионные масла высокой вязкости.

Риформинг — это более совершенный процесс перегонки нефти, в результате которого стало возможным получение бензинов с более высоким октановым числом, и удаление из конечного продукта всех тяжелых элементов.

Чем более чистое топливо получается после всех этих процессов перегонки, тем меньшее количество токсичных веществ содержится в выхлопных газах. Также, при производстве топлива практически нет отходов, то есть все составляющие нефти используются по назначению.

Важное качество бензина, на которое обязательно нужно обращать внимание во время заправки, — это октановое число. Октановое число определяет стойкость топлива к детонации. В состав бензина входят два элемента — изооктан и гептан.

Первый — крайне взрывоопасен, а для второго детонационная способность равна нулю, при определенных условиях конечно. Октановое число как раз и указывает на соотношение гептана и изооктана.

Отсюда следует, что бензин с большим октановым числом более стойкий к детонации, то есть будет взрываться только при определенных условиях, которые возникают в блоке цилиндров.

Октановое число можно повысить с помощью специальных присадок, содержащих такие элементы, как свинец. Однако свинец — это крайне недружелюбный химический элемент ни для природы, ни для двигателя. Поэтому использование многих присадок на данный момент запрещено. Повысить октановое число можно и с помощью другого углеводорода — спирта.

Например если к литру А-92-го добавить сто грамм чистого спирта, то можно получить А-95. Но такой бензин будет стоить очень уж дорого.

Очень важен и такой факт, как летучесть некоторых составляющих бензина. Например, для получения А-95 в А-92 добавляют газы пропан или бутан, которые со временем улетучиваются. ГОСТы требуют, чтобы бензин сохранял свои свойства в течении пяти лет, но это не всегда выполняется. Можно заправиться А-95, который в действительности окажется А-92.

Вас должен насторожить сильный запах газа на АЗС.

https://www.youtube.com/watch?v=kif8QzoSL1o

Исследование качества бензина

Оцените статью
Кислород
Добавить комментарий