Химический состав воздуха |

Химический состав воздуха | Кислород

Все тесты

  • Тест на темуАнализ стихотворения «Не с теми я, кто бросил землю» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Перемена» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Стихи о Петербурге» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Стихи к Блоку» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «Клеветникам России» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Завещание» Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «Стихи о Москве» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «Молитва» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «И. И. Пущину!» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «День и ночь» Ф. Тютчева5 вопросов
  • Тест на темуАнализ стихотворения «Весна в лесу» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Журавли» Р. Гамзатова5 вопросов
  • Тест на темуАнализ стихотворения «Люблю» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения «Когда на меня навалилась беда» К. Кулиева5 вопросов
  • Тест на темуАнализ стихотворения «Гамлет» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Русь» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Ночь» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения К. Симонова «Ты помнишь, Алёша, дороги Смоленщины…»5 вопросов
  • Тест на темуАнализ стихотворения Жуковского «Приход весны»5 вопросов
  • Тест на темуАнализ стихотворения Анны Ахматовой «Сероглазый король»5 вопросов
  • Тест на темуАнализ стихотворения «Июль – макушка лета…»5 вопросов
  • Тест на темуАнализ стихотворения «Мелколесье. Степь и дали…» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Не позволяй душе лениться» Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «На дне моей жизни» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Нивы сжаты, рощи голы…» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Бабушкины сказки» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Снежок» Н. Некрасова1 вопрос
  • Тест на темуАнализ стихотворения «По вечерам» Н. Рубцова5 вопросов
  • Тест на темуАнализ стихотворения «Вчерашний день, часу в шестом…» Н. Некрасова5 вопросов
  • Тест на темуАнализ стихотворения «Цветы последние милей…» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Я знаю, никакой моей вины…» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Я не ищу гармонии в природе»Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «Разбуди меня завтра рано» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Снега потемнеют синие» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Осень» Н. Карамзина5 вопросов
  • Тест на темуАнализ стихотворения «Молитва» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Вечер» А. Фета5 вопросов
  • Тест на темуАнализ стихотворения «Не жалею, не зову, не плачу» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Тучи» М. Лермонтова5 вопросов
  • Тест на темуАнализ стихотворения «Книга» Г. Тукая5 вопросов
  • Тест на темуАнализ стихотворения «Необычайное приключение, бывшее с Владимиром Маяковским летом на даче» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения «Деревня» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Летний вечер» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Я убит подо Ржевом» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Элегия» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Зимнее утро» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Троица» И. Бунина5 вопросов
  • Тест на темуАнализ стихотворения «Бабушке» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «О весна без конца и краю» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Море» В. Жуковского5 вопросов

Выбираем монитор-детектор качества воздуха (pm2.5, co2, tvoc, hcho): лучшие модели на страже вашего здоровья / блог им. lexus08 / ixbt live

Контроль за окружающим воздухом выходит на первое место, и не последнюю роль играют газоанализаторы и детекторы примесей в воздухе. Не так давно эти приборы были сугубо профессиональными, но сейчас есть возможность приобрести для себя анализатор параметров воздуха, например, датчик частиц пыли (PM1.0, PM2.5, PM10), датчики СО и СО2, газоанализаторы, например, паров формальдегид или летучих веществ (ЛОС). На рынке присутствуют недорогие модели на 1-2 параметра, стоимостью от $20, заканчивая профессиональными комбоанализаторами за ~$200. Ряд моделей имеет возможность удаленного мониторинга и подключения к системам умного дома.

Если интересна подборка простых моделей, которые измеряют 1-2 параметра, типа монитора качества воздуха Xiaomi PM2.5, прошу написать в комментариях, тогда оформлю отдельную статью. А вот подробный обзор про комбинированное устройство Монитор качества воздуха Honeywell HAQ (6 типов показателей) 

 Профессиональный детектор-газоанализатор

Начну список с хорошей качественной модели анализатора-детектора из Поднебесной. Это переносной (ручной) детектор, который сразу отображает несколько параметров: измерение частиц PM1.0, PM2.5 и PM10 в воздухе (лазерный датчик), газоанализатор HCHO (формальдегид), летучих веществ (ЛОС/VOC), датчик газа СО2. Есть возможность экспорта лога на MicroSD карту. Встроенный аккумулятор 2200мАч. Есть модификации 4-в-1 и 6-в-1, будьте внимательны.

Беспроводной монитор качества воздуха JQ-200/JQ-300

Простой и практичный беспроводной монитор качества воздуха с измерением параметров содержания HCHO (формальдегид), летучих веществ (ЛОС/VOC) и углекислого газа СО2. Встроенного аккумулятора нет, работает от питания USB. Беспроводное подключение по Wi-Fi (2.4G). В кармане носить не получится, но дома работает непрерывно. Версия JQ-300 отличается наличием дополнительного детектора частиц пыли PM2.5.

Портативный детектор качества воздуха

 Свежая модель портативного детектора-анализатора качества воздуха (2022 года). Оборудован датчиками частиц PM2.5 и PM10 в воздухе (лазерный датчик), газоанализатором формальдегида (HCHO), детектором летучих веществ (ЛОС/VOC), датчиком газа СО2. Простой в использовании, работает от аккумулятора, есть подставка (подножка) для использовании в комнате.

Портативный детектор качества воздуха

 Бюджетная, почти детская модель детектора, цена практически самая низкая из всех, что я смог найти. Дисплей цветной, корпус переносной (карманный). Измеряет наличие частиц пыли в воздухе (датчики PM1, PM2.5 и PM10), газов формальдегида (HCHO) и летучих органических веществ (VOC/ЛОС). За работу отвечает встроенный аккумулятор 1000mAh.

Бюджетный детектор-анализатор

 Эта модель точно самая дешевая (около $25), также, как и другие модели имеет встроенный газоанализатор формальдегида (HCHO) и летучих органических веществ (VOC/ЛОС), а также датчик углекислого газа (СО2). Измерителя твердых частиц в воздухе (PM1 / PM2.5 / PM10) — не предусмотрено, тут внимательно смотрите. Работает от USB.

Комбинированный детектор-газоанализатор

 Для контраста добавляю топовую модель домашнего измерителя качества воздуха Air Master. Это не самая дорогая, но самая продвинутая модель анализатора со встроенными датчиками твердых частиц в воздухе (PM2.5 / PM10), газоанализаторы формальдегида (HCHO) и летучих органических веществ (VOC/ЛОС). Конечно, есть встроенный датчик температуры и влажности (гигрометр). Есть модификация с Wi-Fi (по ссылке без Wi-Fi, нужную искать по словам «Air Master Wi-Fi»)

портативный анализатор качества воздуха

 В копилку бюджетных моделей — компактный анализатор все-в-одном, выполнен в виде портативного прибора. Дисплей цветной и отображает несколько параметров сразу: величину содержания частиц PM2.5 и PM10 в воздухе, показания газоанализатора HCHO (формальдегид), и содержание летучих веществ (ЛОС/VOC). Цветом показывает допустимые границы и превышение содержания частиц и газов в воздухе. Цена около $30. 

Стационарный измеритель-анализатор

 Настольный анализатор качества воздуха DM601 с большим цветным экраном 4.3″ (320×240 пикселей) и встроенными датчиками твердых частиц PM1.0, PM2.5 и PM10 в воздухе (лазерный датчик), газоанализатором HCHO (формальдегиды), датчиком летучих веществ (ЛОС/VOC). Показывает сводный индекс качества воздуха. Встроенная литиевая батарея с емкостью 3000 мАч может подзаряжаться от MicroUSB порта.  Дополнительно сделаны часы и будильник.

портативный измеритель качества воздуха 

 Еще одна хорошая карманная модель анализатора качества воздуха Dienmern — качественный прибор с неплохим дизайном. Отображаемые параметры: содержание твердых частиц PM1.0, PM2.5 и PM10 в воздухе, летучих веществ (ЛОС/VOC), газов формальдегида (HCHO), а также температура и влажность в помещении. Есть возможность сохранить показания, откалибровать прибор, а также установка даты/времени. Дисплей 320×240 точек, цветом показывает превышение значений частиц и газов. Отмечу, что производитель сейчас предлагает в подарок специальную маску PM2.5 от пыли.

Комнатный мультианализатор воздуха

Ну и в завершении подборки предлагаю посмотреть на интересный настольный прибор с яркой индикацией основных параметров качества воздуха: содержание твердых частиц PM1.0, PM2.5 и PM10 в воздухе, летучих веществ (ЛОС/VOC), газов формальдегида (HCHO), а также температура. Внутри предусмотрен электрохимический датчик формальдегида и лазерный датчик частиц. Работает как от встроенного аккумулятора, так и от MicroUSB кабеля. 

 Выбираем, сравниваем, сохраняем себе в корзину детекторы, оформляем с купонами продавца или Алиэкспресс. Предложения хорошие, но не забывайте, что все точные приборы требуют калибровки. При получении постарайтесь изучить инструкцию и сравнить показания в помещении и на чистом воздухе на улице. Дешевые модели идут с иероглифами на экране, так что есть определенный риск.

Газоанализаторы диоксида углерода (co2) — обзор, характеристики, цены

Газоанализатор взрывоопасных и токсичных газов
Измерение: O2, CO, CO2, SO2, H2S, NO2, EX, CH4, C3H8, SumCH
МНОГОКОМПОНЕНТНЫЙ ПОРТАТИВНЫЙ ГАЗОАНАЛИЗАТОР
Измерение: H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, CH4, C3H8
Система контроля качества воздуха
Блок питания и сигнализации
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H2, D2O, SumCH
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, SumCH
Газоанализатор многокомпонентных смесей
Система контроля атмосферы
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H2
Многокомпонентный газоанализатор промышленных выбросов
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL
Газоанализатор универсальный
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C2H5OH, C6H14, O3, SF6
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C6H14, O3
Газоанализатор взрывоопасных паров переносной
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C6H14, O3
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C6H14, O3
Газоанализатор кислорода, токсичных и горючих газов
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, CH4, C3H8, C6H14, HF
Газоанализатор кислорода и токсичных газов
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, HF
Газоанализатор токсичных и горючих газов
Измерение: H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, CH4, C3H8, C6H14, HF
Переносной многокомпонентный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, CH4, C3H8, C2H5OH, CH3OH
Портативный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, NO, NO2, NH3, HCL, EX, CH4, PH3
Портативный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, HCL, EX, O3, HF, PH3
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, HCL, EX, O3, HF, PH3

§

Газоанализатор многокомпонентный
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NH3, CH4, C3H8, C6H14, HF
Переносной газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Переносной газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Переносной газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Переносной газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Стационарный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Стационарный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Стационарный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Стационарный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Стационарный газоанализатор
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C4H10, C2H5OH, C6H14, O3, H2CO, SF6, HF, PH3
Газоанализатор индивидуальный
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, CH4
Газоанализатор переносной многокомпонентный
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, CH4, C3H8

§

Стационарный оптический газоанализатор
Измерение: O2, H2, CO2, SO2, H2S, CL2, NO, NO2, NH3, CH4, C3H8, C4H10, C6H14
Многокомпонентный газоанализатор
Измерение: O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, EX, CH4, C3H8, C4H10, PH3
Пультр контроля и сигнализации
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C2H5OH, CH3OH
Газоанализаторы одноканальные
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H5OH, H2CO, CH3OH
Газоанализаторы одноканальные взрывозащищенные
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H5OH, H2CO, CH3OH
Датчики газа взрывозащищенные
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H5OH, H2CO, CH3OH
Датчики газа взрывозащищенные
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H5OH, H2CO, CH3OH
Датчики-газоанализаторы взрывозащищенные
Измерение: O2, H2, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C4H10, C2H5OH, H2CO, CH3OH
Измерение: O2, H2, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C4H10, C2H5OH, H2CO, CH3OH
Газоанализаторы портативные однокомпонентные
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, CH4, C3H8, C2H5OH, SumCH, CH3OH
Блок питания и сигнализации
Измерение: O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H2, D2O, SumCH
Измерение: O2, CO, CO2, SO2, H2S, NO2, EX, CH4, C3H8, SumCH

Какие природные явления происходят в атмосфере?

Все природные явления, происходящие в атмосфере, можно разделить на 5 категорий:

  • осадки (гидрометеоры);
  • оптические явления;
  • литометеоры;
  • электрические явления;
  • остальные явления.

Все виды выпадающих осадков называются гидрометеорами. Дожди, снегопады, град возникают из-за того, что в воздухе может находиться ограниченное количество водяного пара.

Образование осадков
Образование осадков

При этом охлаждение ненасыщенного воздуха становится причиной его перенасыщения. В результате частицы воды конденсируются и выпадают на поверхность. В эту же группу относят осадки, конденсирующиеся на поверхности (туман, гололед, иней, роса и др.).

К оптическим атмосферным явлениям относится радуга, мираж, заря, зеленый луч и др. Полярное сияние не входит в данную категорию, так как имеет другую природу происхождения.

Самым известным явлением считается радуга. Она возникает вследствие преломления солнечного света атмосферой. Белый свет состоит из множества волн, а из-за преломления он раскладывается на несколько разноцветных лучей.

Двойная радуга
Двойная радуга

Зеленый луч возникает в момент восхода или захода солнца при условии открытого горизонта и отсутствия облаков. Причина явления также кроется в преломлении солнечных лучей. Но, в отличие от радуги, здесь лучи накладываются друг на друга и в течение нескольких секунд можно увидеть зеленый луч или верхнюю часть солнечного диска.

Зеленый луч
Зеленый луч

Разные виды миражей происходят, когда свет преломляется на границе между воздушными слоями с разной температурой и плотностью. При этом можно увидеть реальный объект, расположенный вдали, и его отражение в атмосфере.

Мираж в пустыне
Мираж в пустыне

Заря бывает утренней и вечерней. Так называют свечение неба, когда солнце восходит и заходит за горизонт. Возникает заря из-за отражения лучей света от атмосферных слоев. Она постепенно меняет цвета в зависимости от положения солнца.

Вечерняя заря
Вечерняя заря

Третья категория литометеоров представлена явлениями, которые связаны с мелкими частицами, например, песком, пылью. Сюда относятся песчаные бури, пыльные бури, пыльная мгла и др. Данные явления свойственны пустынным территориям.

Песчаная буря
Песчаная буря

К электрическим явлениям относятся молнии, грозы, полярное сияние. Грозы сопровождаются молниями и громом. При этом электрические разряды возникают внутри облаков либо между землей и облаками. Сюда же относится шаровая молния, природа которой все еще не изучена.

Полярное сияние (северное и южное) образуется в верхних слоях атмосферы, расположенных в зонах вокруг магнитных полюсов Земли. Мы видим свечение вследствие взаимодействия слоев атмосферы с ионизированными частицами солнечного ветра.

Стив - разновидность полярного сияния. Открыта в 2022 году
Стив – разновидность полярного сияния в виде фиолетового луча. Открыта в 2022 году

Интересный факт: полярное сияние бывает и на других планетах. Оно было обнаружено на Венере, Марсе, Сатурне, Юпитере, Уране, Нептуне. Ученые фиксируют эти явления при помощи внеатмосферных телескопов (например «Хаббл»).

В пятую категорию входят все те явления, которые невозможно отнести в четыре предыдущие. В частности речь идет об ураганах, шквалах, смерчах – то есть ветровых явлениях.

Регистр лекарственных средств россии рлс пациент 2003. — москва, регистр лекарственных средств россии, 2002. — 1.5.2.1. дыхательная система. физиология дыхания

Процесс дыхания, поступление кислорода в организм при вдохе и удаление из него углекислого газа и паров воды при выдохе. Строение респираторной системы. Ритмичность и различные типы дыхательного процесса. Регуляция дыхания. Разные способы дыхания.

Для нормального протекания обменных процессов в организме человека и животных в равной мере необходим как постоянный приток кислорода, так и непрерывное удаление углекислого газа, накапливающегося в ходе обмена веществ. Такой процесс называется внешним дыханием.

Таким образом, дыхание – одна из важнейших функций регулирования жизнедеятельности человеческого организма. В организме человека функцию дыхания обеспечивает дыхательная (респираторная система).

В дыхательную систему входят легкие и респираторный тракт (дыхательные пути), который, в свою очередь, включает носовые ходы, гортань, трахею, бронхи, мелкие бронхи и альвеолы (смотри рисунок 1.5.3). Бронхи разветвляются, распространяясь по всему объему легких, и напоминают крону дерева. Поэтому часто трахею и бронхи со всеми ответвлениями называют бронхиальным деревом.

Кислород в составе воздуха через носовые ходы, гортань, трахею и бронхи попадает в легкие. Концы самых мелких бронхов заканчиваются множеством тонкостенных легочных пузырьков – альвеол (смотри рисунок 1.5.3).

Альвеолы – это 500 миллионов пузырьков диаметром 0,2 мм, где происходит переход кислородом в кровь, удаление углекислого газа из крови.

Здесь и происходит газообмен. Кислород из легочных пузырьков проникает в кровь, а углекислый газ из крови – в легочные пузырьки (рисунок 1.5.4).

Химический состав воздуха |

Рисунок 1.5.4. Легочный пузырек. Газообмен в легких

Важнейший механизм газообмена – это диффузия, при которой молекулы перемещаются из области их высокого скопления в область низкого содержания без затраты энергии (пассивный транспорт). Перенос кислорода из окружающей среды к клеткам производится путем транспорта кислорода в альвеолы, далее в кровь. Таким образом, венозная кровь обогащается кислородом и превращается в артериальную. Поэтому состав выдыхаемого воздуха отличается от состава наружного воздуха: в нем содержится меньше кислорода и больше углекислого газа, чем в наружном, и много водяных паров (смотри рисунок 1.5.4). Кислород связывается с гемоглобином, который содержится в эритроцитах, насыщенная кислородом кровь поступает в сердце и выталкивается в большой круг кровообращения. По нему кровь разносит кислород по всем тканям организма. Поступление кислорода в ткани обеспечивает их оптимальное функционирование, при недостаточном же поступлении наблюдается процесс кислородного голодания (гипоксии).

Недостаточное поступление кислорода может быть обусловлено несколькими причинами как внешними (уменьшение содержания кислорода во вдыхаемом воздухе), так и внутренними (состояние организма в данный момент времени). Пониженное содержание кислорода во вдыхаемом воздухе, так же как и увеличение содержания углекислого газа и других вредных токсических веществ наблюдается в связи с ухудшением экологической обстановки и загрязнением атмосферного воздуха. По данным экологов только 15% горожан проживают на территории с допустимым уровнем загрязнения воздуха, в большинстве же районов содержание углекислого газа увеличено в несколько раз.

При очень многих физиологических состояниях организма (подъем в гору, интенсивная мышечная нагрузка), так же как и при различных патологических процессах (заболевания сердечно-сосудистой, дыхательной и других систем) в организме также может наблюдаться гипоксия.

Природа выработала множество способов, с помощью которых организм приспосабливается к различным условиям существования, в том числе к гипоксии. Так компенсаторной реакцией организма, направленной на дополнительное поступление кислорода и скорейшее выведение избыточного количества углекислого газа из организма является углубление и учащение дыхания. Чем глубже дыхание, тем лучше вентилируются легкие и тем больше кислорода поступает к клеткам тканей.

К примеру, во время мышечной работы усиление вентиляции легких обеспечивает возрастающие потребности организма в кислороде. Если в покое глубина дыхания (объем воздуха, вдыхаемого или выдыхаемого за один вдох или выдох) составляет 0,5 л, то во время напряженной мышечной работы она увеличивается до 2-4 л в 1 минуту. Расширяются кровеносные сосуды легких и дыхательных путей (а также дыхательных мышц), увеличивается скорость тока крови по сосудам внутренних органов. Активируется работа дыхательных нейронов. Кроме того, в мышечной ткани есть особый белок (миоглобин), способный обратимо связывать кислород. 1 г миоглобина может связать примерно до 1,34 мл кислорода. Запасы кислорода в сердце составляют около 0,005 мл кислорода на 1 г ткани и этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3-4 с.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок нарушается.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным.

Все эти факторы, включая усиление вентиляции легких, компенсируют кислородный “долг”, который наблюдается при физической работе. Естественно, увеличению доставки кислорода к работающим мышцам и удалению углекислого газа способствует согласованное увеличение кровообращения в других системах организма.

Саморегуляция дыхания. Организм осуществляет тонкое регулирование содержания кислорода и углекислого газа в крови, которое остается относительно постоянным, несмотря на колебания количества поступающего кислорода и потребности в нем. Во всех случаях регуляция интенсивности дыхания направлена на конечный приспособительный результат – оптимизацию газового состава внутренней среды организма.

Частота и глубина дыхания регулируются нервной системой – ее центральными (дыхательный центр) и периферическими (вегетативными) звеньями. В дыхательном центре, расположенном в головном мозге, имеются центр вдоха и центр выдоха.

Дыхательный центр представляет совокупность нейронов, расположенных в продолговатом мозге центральной нервной системы.

При нормальном дыхании центр вдоха посылает ритмические сигналы к мышцам груди и диафрагме, стимулируя их сокращение. Ритмические сигналы образуются в результате спонтанного образования электрических импульсов нейронами дыхательного центра.

Сокращение дыхательных мышц приводит к увеличению объема грудной полости, в результате чего воздух входит в легкие. По мере увеличения объема легких возбуждаются рецепторы растяжения, расположенные в стенках легких; они посылают сигналы в мозг – в центр выдоха. Этот центр подавляет активность центра вдоха, и поток импульсных сигналов к дыхательным мышцам прекращается. Мышцы расслабляются, объем грудной полости уменьшается, и воздух из легких вытесняется наружу (смотри рисунок 1.5.5).

Химический состав воздуха |

Рисунок 1.5.5. Регуляция дыхания

Процесс дыхания, как уже отмечалось, состоит из легочного (внешнего) дыхания, а также транспорта газа кровью и тканевого (внутреннего) дыхания. Если клетки организма начинают интенсивно использовать кислород и выделять много углекислого газа, то в крови повышается концентрация угольной кислоты. Кроме того, увеличивается содержание молочной кислоты в крови за счет усиленного образования ее в мышцах. Данные кислоты стимулируют дыхательный центр, и частота и глубина дыхания увеличиваются. Это еще один уровень регуляции. В стенках крупных сосудов, отходящих от сердца, имеются специальные рецепторы, реагирующие на понижение уровня кислорода в крови. Эти рецепторы также стимулируют дыхательный центр, повышая интенсивность дыхания. Данный принцип автоматической регуляции дыхания лежит в основе бессознательного управления дыханием, что позволяет сохранить правильную работу всех органов и систем независимо от условий, в которых находится организм человека.

Ритмичность дыхательного процесса, различные типы дыхания. В норме дыхание представлено равномерными дыхательными циклами “вдох – выдох” до 12-16 дыхательных движений в минуту. В среднем такой акт дыхания совершается за 4-6 с. Акт вдоха проходит несколько быстрее, чем акт выдоха (соотношение длительности вдоха и выдоха в норме составляет 1:1,1 или 1:1,4). Такой тип дыхания называется эйпноэ (дословно – хорошее дыхание). При разговоре, приеме пищи ритм дыхания временно меняется: периодически могут наступать задержки дыхания на вдохе или на выходе (апноэ). Во время сна также возможно изменение ритма дыхания: в период медленного сна дыхание становится поверхностным и редким, а в период быстрого – углубляется и учащается. При физической нагрузке за счет повышенной потребности в кислороде возрастает частота и глубина дыхания, и, в зависимости от интенсивности работы, частота дыхательных движений может достигать 40 в минуту.

При смехе, вздохе, кашле, разговоре, пении происходят определенные изменения ритма дыхания по сравнению с так называемым нормальным автоматическим дыханием. Из этого следует, что способ и ритм дыхания можно целенаправленно регулировать с помощью сознательного изменения ритма дыхания.

Человек рождается уже с умением использовать лучший способ дыхания. Если проследить как дышит ребенок, становится заметным, что его передняя брюшная стенка постоянно поднимается и опускается, а грудная клетка остается практически неподвижной. Он “дышит” животом – это так называемый диафрагмальный тип дыхания.

Диафрагма – это мышца, разделяющая грудную и брюшную полости.Сокращения данной мышцы способствуют осуществлению дыхательных движений: вдоха и выдоха.

В повседневной жизни человек не задумывается о дыхании и вспоминает о нем, когда по каким-то причинам становится трудно дышать. Например, в течение жизни напряжение мышц спины, верхнего плечевого пояса, неправильная осанка приводят к тому, что человек начинает “дышать” преимущественно только верхними отделами грудной клетки, при этом объем легких задействуется всего лишь на 20%. Попробуйте положить руку на живот и сделать вдох. Заметили, что рука на животе практически не изменила своего положения, а грудная клетка поднялась. При таком типе дыхания человек задействует преимущественно мышцы грудной клетки (грудной тип дыхания) или области ключиц (ключичное дыхание). Однако как при грудном, так и при ключичном дыхании организм снабжается кислородом в недостаточной степени.

Недостаток поступления кислорода может возникнуть также при изменении ритмичности дыхательных движений, то есть изменении процессов смены вдоха и выдоха.

В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), клетками печени и корковым веществом почек; клетки скелетной мускулатуры, селезенка и белое вещество головного мозга потребляют в состоянии покоя меньший объем кислорода, то при физической нагрузке потребление кислорода миокардом увеличивается в 3-4 раза, а работающими скелетными мышцами – более чем в 20-50 раз по сравнению с покоем.

Интенсивное дыхание, состоящее в увеличении скорости дыхания или его глубины (процесс называется гипервентиляцией), приводит к увеличению поступления кислорода через воздухоносные пути. Однако частая гипервентиляция способна обеднить ткани организма кислородом. Частое и глубокое дыхание приводит к уменьшению количества углекислоты в крови (гипокапнии) и защелачиванию крови – респираторному алкалозу.

Подобный эффект прослеживается, если нетренированный человек осуществляет частые и глубокие дыхательные движения в течение короткого времени. Наблюдаются изменения со стороны как центральной нервной системы (возможно появление головокружения, зевоты, мелькания “мушек” перед глазами и даже потери сознания), так и сердечно-сосудистой системы (появляется одышка, боль в сердце и другие признаки). В основе данных клинических проявлений гипервентиляционного синдрома лежат гипокапнические нарушения, приводящие к уменьшению кровоснабжения головного мозга. В норме у спортсменов в покое после гипервентиляции наступает состояние сна.

Следует отметить, что эффекты, возникающие при гипервентиляции, остаются в то же время физиологичными для организма – ведь на любое физическое и психоэмоциональное напряжение организм человека в первую очередь реагирует изменением характера дыхания.

При глубоком, медленном дыхании (брадипноэ) наблюдается гиповентиляционный эффект. Гиповентиляция – поверхностное и замедленное дыхание, в результате которого в крови отмечается понижение содержание кислорода и резкое увеличение содержания углекислого газа (гиперкапния).

Количество кислорода, которое клетки используют для окислительных процессов, зависит от насыщенности крови кислородом и степени проникновения кислорода из капилляров в ткани.Снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов в тканях.

В 1931 году доктор Отто Варбург получил Нобелевскую премию в области медицины, открыв одну из возможных причин возникновения рака. Он установил, что возможной причиной этого заболевания является недостаточный доступ кислорода к клетке.

Используя простые рекомендации, а также различные физические упражнения, можно повысить доступ кислорода к тканям.

  • Правильное дыхание, при котором воздух, проходящий через воздухоносные пути, в достаточной степени согревается, увлажняется и очищается – это спокойное, ровное, ритмичное, достаточной глубины.
  • Во время ходьбы или выполнения физических упражнений следует не только сохранять ритмичность дыхания, но и правильно сочетать ее с ритмом движения (вдох на 2-3 шага, выдох на 3-4 шага).
  • Важно помнить, что потеря ритмичности дыхания приводит к нарушению газообмена в легких, утомлению и развитию других клинических признаков недостатка кислорода.
  • При нарушении акта дыхания уменьшается приток крови к тканям и понижается насыщение ее кислородом.

Необходимо помнить, что физические упражнения способствуют укреплению дыхательной мускулатуры и усиливают вентиляцию легких. Таким образом, от правильного дыхания в значительной мере зависит здоровье человека.

Физические свойства углекислоты


Физические свойства углекислоты

Углекислота  (СО2, двуокись углерода, диоксид углерода) – вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях – газообразном, жидком, твёрдом и сверхкритическом.

Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре 20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться – переходить сразу в твёрдое состояние, минуя жидкую фазу.

Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте – путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

Жидкое состояние СО2 носит техническое название «жидкая углекислота» или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0… 31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход,  углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется – постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм,  в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

  • Удельный вес. Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
  • Критическая температура углекислоты  31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
  • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
  • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
  • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное , стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к  мелу,
  • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 — 1,6.
  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением 
  • V= R T/p — A,                                                где 
  • V — объем, м3/кг;
  • R — газовая постоянная 848/44 = 19,273;
  • Т — температура, К град.;
  • р  давление, кг/м2;
  • А — дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа.  Он выражается зависимостью А =( 0, 0825 (1,225)10-7 р)/(Т/100)10/3.
  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже  5,28 ата  (кг/см2)  (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  •  В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  •                                          i’ x i» у = i,
  •                                             x у = 1,                                                          где, 
  • x    и   у — доля вещества в жидком и парообразном   виде;
  • i’   — энтальпия жидкости;
  • i» — энтальпия пара;
  • i —  энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  •                                          i» у   i» z = i,
  •                                              у   z = 1,                                        где,
  • i» — энтальпия  твердой углекислоты;
  •  z  — доля вещества в твердом состоянии.
  •  В тройной точке для трех фаз имеются также только два уравнения
  •                                  i’ x i» у i»’ z  = i,
  •                                   x у z  = 1.
  • Зная значения  i,’   i’,’   i»’  для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость.  Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до 20 град. характеризуется следующими значениями, ккал/кг*град.                 :
  • Град.С          -50               -40                    -30                -20             -10              0             10                   20
  • Ср,                0,47           0,49                  0,515            0,514          0,517         0,6           0,64               0,68
  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений  определяют по   уравнению Планка и Куприянова.
  •        i = 169,34 (0,1955 0,000115t)t — 8,3724 p(1 0,007424p)/0,01T(10/3),                               где
  • I – ккал/кг,                 р – кг/см2,  Т – град.К,      t – град.С.
  • Энтальпию жидкой углекислоты в любой точке   можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой  теплоты парообразования. Точно так же , вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Вязкость.   Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  •  
  • Давление, ата              -15 град.                  0 град.                      20 град.                40 град .                  
  •         5                               1,38                        1,42                          1,49                      1,60
  •         30                           12,04                        1,63                          1,61                      1,72
  •         75                           13,13                      12,01                          8,32                      2,30

Техника безопасности

По степени воздействия на организм человека газообразный диоксид углерода относится к 4-му классу опасности по ГОСТу 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». Предельно допустимая концентрация в воздухе рабочей зоны не установлена, при оценке этой концентрации следует ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5%.

При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

Оцените статью
Кислород
Добавить комментарий