Кислород | Virtual Laboratory Wiki | Fandom

Кислород | Virtual Laboratory Wiki | Fandom Кислород

Атом и молекула кислорода. формула кислорода. строение кислорода:

Кислород – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением О и атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.

Кислород самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы халькогенов.

Кислород – химически активный неметалл.

Кислород обозначается символом О.

Как простое вещество кислород (химическая формула O2) при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха. В жидком состоянии кислород имеет светло-голубой цвет, а в твёрдом – представляет собой кристаллы светло-синего цвета.

Молекула кислорода двухатомна. Также встречается аллотропная модификация кислорода – озон, молекула которого состоит из трёх атомов кислорода.

Химическая формула кислорода O2 (или O3 – озон).

Электронная конфигурация атома кислорода 1s2 2s2 2p4. Потенциал ионизации (первый электрон) атома кислорода равен 1313,94 кДж/моль (13,618055(7) эВ).

Строение атома кислорода. Атом кислорода (наиболее распространенный из трех изотопов кислорода (99,757 %) – 168О) состоит из положительно заряженного ядра ( 8), вокруг которого по атомным оболочкам движутся восемь электронов.

При этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поскольку кислород расположен во втором периоде, оболочки всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s- и р-орбиталями.

Два спаренных электрона находится на 1s-орбитали, вторая пара электронов – на 2s-орбитали. На 2р-орбитали находится два спаренных и два неспаренных электрона. Поэтому во всех своих соединениях кислород проявляет валентность II. В свою очередь ядро атома кислорода состоит из восьми протонов и восьми нейтронов. Кислород относится к элементам p-семейства.

Радиус атома кислорода (вычисленный) составляет 48 пм.

Атомная масса атома кислорода составляет 15,99903-15,99977 а. е. м.

Кислород – самый распространённый химический элемент на Земле. В земной коре на его долю в составе различных соединений приходится около 46 % массы. Морские и пресные воды содержат по массе 86 % кислорода (если быть точнее – 85,82 %). В человеке его содержание составляет по массе 61 %.

При высокой температуре молекула кислорода О2 обратимо диссоциирует на атомарный кислород. При 2000 °C на атомарный кислород диссоциирует 0,03 % молекулярного кислорода, при 2600 °C – 1 %, при 4000 °C – 59 %, при 6000 °C — 99,5 %.

Биологическая роль

К. как в сво­бод­ном ви­де, так и в со­ста­ве разл. ве­ществ (напр., фер­мен­тов ок­си­даз и ок­си­до­ре­дук­таз) при­ни­ма­ет уча­стие во всех окис­лит. про­цес­сах, про­те­каю­щих в жи­вых ор­га­низ­мах. В ре­зуль­та­те вы­де­ля­ет­ся боль­шое ко­ли­че­ст­во энер­гии, рас­хо­дуе­мой в про­цес­се жиз­не­дея­тель­но­сти.

Биологическая роль кислорода

Файл:Emergency stock of oxygen.jpg

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха.
Широко используется кислород в медицине.

При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»).

Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях.

Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном.

Радиоактивный изотоп кислорода 15O применяется для исследований скорости кровотока, лёгочной вентиляции.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавкиE941[источник?], как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, — окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), аммиака в оксиды азота в производстве азотной кислоты.

Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

Гсссд 19-81 кислород жидкий и газообразный. плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 к и давлениях 0,1-100 мпа от 13 мая 1981 —

ГСССД 19-81

ГОСУДАРСТВЕННАЯ СЛУЖБА СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ

GSSSD 19-81

РАЗРАБОТАНЫ Московским ордена Ленина энергетическим институтом; Одесским институтом инженеров морского флота; Всесоюзным научно-исследовательским институтом метрологической службы

Авторы: д-р техн. наук В.В.Сычев, д-р техн. наук А.А.Вассерман, канд. техн. наук А.Д.Козлов, канд. техн. наук Г.А.Спиридонов, канд. техн. наук В.А.Цымарный

РЕКОМЕНДОВАНЫ К УТВЕРЖДЕНИЮ Советским национальным комитетом по сбору и оценке численных данных в области науки и техники Президиума АН СССР; Секцией теплофизических свойств веществ Научного совета АН СССР по комплексной проблеме «Теплофизика»;

Всесоюзным научно-исследовательским центром Государственной службы стандартных справочных данных

ОДОБРЕНЫ экспертной комиссией ГСССД в составе:

д-ра техн. наук И.Ф.Голубева, д-ра хим. наук Л.В.Гурвича, д-ра техн. наук А.В.Клецкого, д-ра техн. наук В.А.Рабиновича, д-ра техн. наук А.М.Сироты

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским центром Государственной службы стандартных справочных данных (ВНИЦ ГСССД)

УТВЕРЖДЕНЫ Государственным комитетом СССР по стандартам 13 мая 1981 г. (протокол N 64)

     
Применение стандартных справочных данных обязательно во всех отраслях народного хозяйства

Настоящие таблицы стандартных справочных данных содержат значения плотности, энтальпии, энтропии и изобарной теплоемкости жидкого и газообразного кислорода для области температур 700-1000 К* и давлений 0,1-100 МПа.

_______________     

* Текст документа соответствует оригиналу. — Примечание изготовителя базы данных.     

Таблицы рассчитаны с помощью единого усредненного уравнения состояния кислорода:

Кислород | Virtual Laboratory Wiki | Fandom,

где Кислород | Virtual Laboratory Wiki | Fandom; Кислород | Virtual Laboratory Wiki | Fandom; Кислород | Virtual Laboratory Wiki | Fandom; Кислород | Virtual Laboratory Wiki | Fandom.

Уравнение составлено по опытным , , -данным, опубликованным в 1893-1975 гг. и охватывающим в совокупности область температур 54-673 К и давлений 0,0001-981 МПа. При составлении уравнения наибольший вес придавался надежным экспериментальным данным [1-8] для области температур ниже 373 К и давлений ниже 70 МПа. Массив перечисленных данных (1842 точки) аппроксимирован уравнением состояния со средней квадратической погрешностью Кислород | Virtual Laboratory Wiki | Fandom0,10%. Дополнительно при составлении уравнения использованы по 25 значений второго и третьего вириальных коэффициентов для интервала температур 100-1600 К из работ [7, 9], по 200 значений производных Кислород | Virtual Laboratory Wiki | Fandom0,10%. Дополнительно при составлении уравнения использованы по 25 значений второго и третьего вириальных коэффициентов для интервала температур 100-1600 К из работ [7, 9], по 200 значений производных Кислород | Virtual Laboratory Wiki | Fandom к Кислород | Virtual Laboratory Wiki | Fandom для области параметров 58-300 К и 0,05-30 МПа [7] и 148 опытных значений изохорной теплоемкости [10] для области 56-284 К и 0,4-35 МПа. В подавляющем большинстве точек погрешность расчета значений производных лежит в пределах ±2%. Опытные данные об изохорной теплоемкости уравнение описывает со средней квадратической погрешностью 2,0%. Уравнение с высокой точностью удовлетворяет правилу Максвелла: значения давления насыщенного пара , найденные с помощью уравнения состояния на основании этого правила, согласуются с достоверными опытными величинами со средней квадратической погрешностью Кислород | Virtual Laboratory Wiki | Fandom для области параметров 58-300 К и 0,05-30 МПа [7] и 148 опытных значений изохорной теплоемкости [10] для области 56-284 К и 0,4-35 МПа. В подавляющем большинстве точек погрешность расчета значений производных лежит в пределах ±2%. Опытные данные об изохорной теплоемкости уравнение описывает со средней квадратической погрешностью 2,0%. Уравнение с высокой точностью удовлетворяет правилу Максвелла: значения давления насыщенного пара , найденные с помощью уравнения состояния на основании этого правила, согласуются с достоверными опытными величинами со средней квадратической погрешностью Кислород | Virtual Laboratory Wiki | Fandom0,06%.

Коэффициенты уравнения состояния [11], полученные в итоге усреднения коэффициентов системы из 159 уравнений, эквивалентных по точности аналитического описания экспериментальных данных:

0,5003616·10;

0,4697109·10;

-0,1101003·10;

0,5554044·10;

-0,6223903·10;

0,5593279·10;

0,1675656·10;

-0,4078490·10;

-0,6652177·10;

-0,3962116·10;

-0,2169624·10;

0,5797930·10;

-0,9781135·10;

-0,3705044·10;

0,1280217·10;

-0,1481088·10;

0,1920227·10;

-0,1711550·10;

-0,3183172·10;

0,1067042·10;

0,8324700·10;

-0,5225285·10;

-0,2974850·10;

0,73023·10

-0,1625295·10;

0,9576734·10;

-0,1913846·10;

0,3030303·10;

0,2632636·10;

0,4463061·10;

-01683686·10;

-0,7658060·10;

-0,4604221·10;

0,3643325·10;

0,3828505·10;

-0,5490344·10;

0,2180327·10;

-0,4612808·10;

0,5240760·10;

0,2105995·10;

-0,7494169·10;

-0,1560455·10.

При расчетах приняты следующие значения газовой постоянной и критических параметров: 259,835 Дж/(кг·К); 154,581 К; Кислород | Virtual Laboratory Wiki | Fandom436,2 кг/м.

Значения энтальпии, энтропии и изобарной теплоемкости рассчитаны по формулам

Кислород | Virtual Laboratory Wiki | Fandom; Кислород | Virtual Laboratory Wiki | Fandom; Кислород | Virtual Laboratory Wiki | Fandom;

     
Кислород | Virtual Laboratory Wiki | Fandom,

где , , — энтальпия, энтропия и изохорная теплоемкость в идеально-газовом состоянии.

Значения и определены по соотношениям

Кислород | Virtual Laboratory Wiki | Fandom,

     
Кислород | Virtual Laboratory Wiki | Fandom,

где и — энтальпия и энтропия при температуре ; — теплота сублимации при 0 К; — константа (в данной работе 0).

Значение теплоты сублимации кислорода принято равным 275,542 кДж/кг по данным [12]. Значения энтальпии и энтропии при температуре 100 К, являющейся вспомогательной точкой отсчета при интегрировании уравнения для , составляют 90,66 кДж/кг и 5,4124 кДж/(кг·К) соответственно [9]. Значения изобарной теплоемкости в идеально-газовом состоянии заимствованы из таблиц [9] и аппроксимированы полиномом

Кислород | Virtual Laboratory Wiki | Fandom,

где

-0,14377991·10;

0,40380420·10;

-0,21055776·10;

0,70241596·10;

-0,15110750·10;

0,21669226·10;

-0,21011829·10;

0,13639068·10;

-0,56838531·10;

0,13754216·10;

Кислород | Virtual Laboratory Wiki | Fandom-0,14696235·10;

0,37935559·10;

-0,17549860·10;

0,44380734·10;

-0,46774962·10;

Кислород | Virtual Laboratory Wiki | Fandom.

В табл.1-4 приведены значения термодинамических функций кислорода, а в табл.5-8 — случайные погрешности этих функций, вычисленные по формуле

Кислород | Virtual Laboratory Wiki | Fandom,

где — среднее значение термодинамической функции; — значение этой функции, полученное по -му уравнению из системы, содержащей уравнений. Погрешность — характеризует рассеяние расчетных значений относительно среднего значения . Значения погрешностей представлены для части изобар; для промежуточных изобар они могут быть определены линейной интерполяцией.

Кислород | Virtual Laboratory Wiki | Fandom

     
Продолжение

Изотопы

Основная статья: Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16О, 17О и 18О, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16О связано с тем, что ядро атома 16О состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12О до 24О.

Историческая справка

К. по­лу­чи­ли в 1774 не­за­ви­си­мо К. Шее­ле (пу­тём про­ка­ли­ва­ния нит­ра­тов ка­лия KNO3 и на­трия NaNO3, ди­ок­си­да мар­ган­ца MnO2 и др. ве­ществ) и Дж. При­стли (при на­гре­ва­нии тет­ра­ок­си­да свин­ца Pb3О4 и ок­си­да рту­ти HgО). Позд­нее, ко­гда бы­ло ус­та­нов­ле­но, что К. вхо­дит в со­став ки­слот, А. Ла­ву­а­зье пред­ло­жил назв. oxy­gène (от греч. ὀχύς – кис­лый и γεννάω – ро­ж­даю, от­сю­да и рус. назв. «К.»).

История открытия

Файл:Electron shell 008 Oxygen.svg

Схема атома кислорода

Основная статья: открытие кислорода

Официально считается, что кислород был открыт английским химиком Джозефом Пристли1 августа1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

2HgO (t) → 2Hg O2↑.

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»).

Несколькими годами ранее (в 1771-м) кислород получил шведский химик Карл Шееле.

Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

[Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.]

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Кислород, свойства атома, химические и физические свойства.

О 8  Кислород

15,99903-15,99977*     1s2 2s2 2p4

Кислород — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.

Атом и молекула кислорода. Формула кислорода. Строение кислорода

Изотопы и модификации кислорода

Свойства кислорода (таблица): температура, плотность, давление и пр.

Физические свойства кислорода

Химические свойства кислорода. Взаимодействие кислорода. Реакции с кислородом

Получение кислорода

Применение кислорода

Таблица химических элементов Д.И. Менделеева

Получение

В настоящее время в промышленности кислород получают из воздуха.
Основным промышленным способом получения кислорода является криогенная ректификация.
Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

Применение

Тех­нич. К. ис­поль­зу­ют как окис­ли­тель в ме­тал­лур­гии (см., напр., Ки­сло­род­но-кон­вер­тер­ный про­цесс), при га­зопла­мен­ной об­ра­бот­ке ме­тал­лов (см., напр., Ки­сло­род­ная рез­ка), в хи­мич. пром-сти при по­лу­че­нии ис­кусств. жид­ко­го то­п­ли­ва, сма­зоч­ных ма­сел, азот­ной и сер­ной ки­слот, ме­та­но­ла, ам­миа­ка и ам­ми­ач­ных удоб­ре­ний, пе­рок­си­дов ме­тал­лов и др. Чис­тый К. ис­поль­зу­ют в ки­сло­род­но-ды­ха­тель­ных ап­па­ра­тах на кос­мич. ко­раб­лях, под­вод­ных лод­ках, при подъ­ё­ме на боль­шие вы­со­ты, про­ве­де­нии под­вод­ных ра­бот, в ле­чеб­ных це­лях в ме­ди­ци­не (см. в ст. Ок­си­ге­но­те­ра­пия). Жид­кий К. при­ме­ня­ют как окис­ли­тель ра­кет­ных то­п­лив, при взрыв­ных ра­бо­тах. Вод­ные эмуль­сии рас­тво­ров га­зо­об­раз­но­го К. в не­ко­то­рых фто­рор­га­нич. рас­тво­ри­те­лях пред­ло­же­но ис­поль­зо­вать в ка­че­ст­ве ис­кусств. кро­ве­за­ме­ни­те­лей (напр., пер­фто­ран).

Применение кислорода:

Таблица химических элементов Д.И. Менделеева

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Таблица химических элементов Д.И. Менделеева

Примечания

  1. Дикислород // Большая Энциклопедия Нефти Газа
  2. J. Priestley, Experiments and Observations on Different Kinds of Air, 1776.
  3. W. Ramsay, The Gases of the Atmosphere (the History of Their Discovery), Macmillan and Co, London, 1896.
  4. 4,04,14,2Inorganic Crystal Structure Database
  5. Margaret-Jane Crawford и Thomas M. Klapötke The trifluorooxonium cation, OF3 // Journal of Fluorine Chemistry. — 1999. — Т. 99. — С. 151-156.
  6. Curie P., Curie M. (1899). «Effets chimiques produits par les rayons de Becquerel«. Comptes rendus de l’Académie des Sciences129: 823-825. 
  7. Радиационная химия // Энциклопедический словарь юного химика. 2-е изд.. — М.: 1990. — С. 200.
  8. Руководство для врачей скорой помощи / Михайлович В. А. — 2-е изд., перераб. и доп. — Л.: Медицина, 1990. — С. 28-33. — 544 с. — 120 000 экз. — ISBN 5-225-01503-4. (см. ISBN )
  9. Food-Info.net : E-numbers : E948 : Oxygen.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр.oxygène), предложенного А.

Лавуазье (от др.-греч.ὀξύς — «кислый» и γεννάω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуреоксидами.

Ракетное топливо

В качестве окислителя для ракетноготоплива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения.

Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометруредуктора) умножают на величину ёмкости баллона в литрах.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавкиE948[9], как пропеллент и упаковочный газ.

Распространённость в природе.

К. – са­мый рас­про­стра­нён­ный хи­мич. эле­мент на Зем­ле: со­дер­жа­ние хи­ми­че­ски свя­зан­но­го К. в гид­ро­сфе­ре со­став­ля­ет 85,82% (гл. обр. в ви­де во­ды), в зем­ной ко­ре – 49% по мас­се. Из­вест­но бо­лее 1400 ми­не­ра­лов, в со­став ко­то­рых вхо­дит К. Сре­ди них пре­об­ла­да­ют ми­не­ра­лы, об­ра­зо­ван­ные со­ля­ми ки­сло­род­со­дер­жа­щих ки­слот (важ­ней­шие клас­сы – кар­бо­на­ты при­род­ные, си­ли­ка­ты при­род­ные, суль­фа­ты при­род­ные, фос­фа­ты при­род­ные), и гор­ные по­ро­ды на их ос­но­ве (напр., из­вест­няк, мра­мор), а так­же разл. ок­си­ды при­род­ные, гид­ро­кси­ды при­род­ные и гор­ные по­ро­ды (напр., ба­зальт). Мо­ле­ку­ляр­ный К. со­став­ля­ет 20,95% по объ­ё­му (23,10% по мас­се) зем­ной ат­мо­сфе­ры. К. ат­мо­сфе­ры име­ет био­ло­гич. про­ис­хо­ж­де­ние и об­ра­зу­ет­ся в зе­лё­ных рас­те­ни­ях, со­дер­жа­щих хло­ро­филл, из во­ды и ди­ок­си­да уг­ле­ро­да при фо­то­син­те­зе. Ко­ли­че­ст­во К., вы­де­ляе­мое рас­те­ния­ми, ком­пен­си­ру­ет ко­ли­че­ст­во К., рас­хо­дуе­мое в про­цес­сах гние­ния, го­ре­ния, ды­ха­ния. К. – био­ген­ный эле­мент – вхо­дит в со­став важ­ней­ших клас­сов при­род­ных ор­га­нич. со­еди­не­ний (бел­ков, жи­ров, нук­леи­но­вых ки­слот, уг­ле­во­дов и др.) и в со­став не­ор­га­нич. со­еди­не­ний ске­ле­та.

Сварка и резка металлов

Кислород в баллонах широко используется для газопламенной резки и сваркиметаллов.

Свойства

Строе­ние внеш­ней элек­трон­ной обо­лоч­ки ато­ма К. 2s22p4; в со­еди­не­ни­ях про­яв­ля­ет сте­пе­ни окис­ле­ния –2, –1, ред­ко 1, 2; элек­тро­от­ри­ца­тель­ность по По­лин­гу 3,44 (наи­бо­лее элек­тро­от­ри­ца­тель­ный эле­мент по­сле фто­ра); атом­ный ра­ди­ус 60 пм; ра­ди­ус ио­на О2– 121 пм (ко­ор­ди­нац. чис­ло 2). В га­зо­об­раз­ном, жид­ком и твёр­дом состояни­ях К. су­ще­ст­ву­ет в ви­де двух­атом­ных мо­ле­кул О2. Мо­ле­ку­лы О2 па­ра­маг­нит­ны. Су­ще­ст­ву­ет так­же ал­ло­троп­ная мо­ди­фи­ка­ция К. – озон, со­стоя­щая из трёх­атом­ных мо­ле­кул О3.

В осн. со­стоя­нии атом К. име­ет чёт­ное чис­ло ва­лент­ных элек­тро­нов, два из ко­то­рых не спа­ре­ны. По­это­му К., не имею­щий низ­кой по энер­гии ва­кант­ной d-ор­би­та­ли, в боль­шин­ст­ве хи­мич. со­еди­не­ний двух­ва­лен­тен. В за­ви­си­мо­сти от ха­рак­те­ра хи­мич. свя­зи и ти­па кри­стал­лич. струк­ту­ры со­еди­не­ния ко­ор­ди­нац. чис­ло К. мо­жет быть раз­ным: 0 (ато­мар­ный К.), 1 (напр., О2, СО2), 2 (напр., Н2О, Н2О2), 3 (напр., Н3О ), 4 (напр., ок­со­аце­та­ты Ве и Zn), 6 (напр., MgO, CdO), 8 (напр., Na2O, Cs2O). За счёт не­боль­шо­го ра­диу­са ато­ма К. спо­со­бен об­ра­зо­вы­вать проч­ные π-свя­зи с др. ато­ма­ми, напр. с ато­ма­ми К. (О2, О3), уг­ле­ро­да, азо­та, се­ры, фос­фо­ра. По­это­му для К. од­на двой­ная связь (494 кДж/моль) энер­ге­ти­че­ски бо­лее вы­год­на, чем две про­стые (146 кДж/моль).

Па­ра­маг­не­тизм мо­ле­кул О2 объ­яс­ня­ет­ся на­ли­чи­ем двух не­спа­рен­ных элек­тро­нов с па­рал­лель­ны­ми спи­на­ми на два­ж­ды вы­ро­ж­ден­ных раз­рых­ляю­щих π*-ор­би­та­лях. По­сколь­ку на свя­зы­ваю­щих ор­би­та­лях мо­ле­ку­лы на­хо­дит­ся на че­ты­ре элек­тро­на боль­ше, чем на раз­рых­ляю­щих, по­ря­док свя­зи в О2 ра­вен 2, т. е. связь ме­ж­ду ато­ма­ми К. двой­ная. Ес­ли при фо­то­хи­мич. или хи­мич. воз­дей­ст­вии на од­ной π*-ор­би­та­ли ока­зы­ва­ют­ся два элек­тро­на с про­ти­во­по­лож­ны­ми спи­на­ми, воз­ни­ка­ет пер­вое воз­бу­ж­дён­ное со­стоя­ние, по энер­гии рас­по­ло­жен­ное на 92 кДж/моль вы­ше ос­нов­но­го. Ес­ли при воз­бу­ж­де­нии ато­ма К. два элек­тро­на за­ни­ма­ют две раз­ные π*-ор­би­та­ли и име­ют про­ти­во­по­лож­ные спи­ны, воз­ни­ка­ет вто­рое воз­бу­ж­дён­ное со­стоя­ние, энер­гия ко­то­ро­го на 155 кДж/моль боль­ше, чем ос­нов­но­го. Воз­бу­ж­де­ние со­про­во­ж­да­ет­ся уве­ли­че­ни­ем меж­атом­ных рас­стоя­ний О–О: от 120,74 пм в осн. со­стоя­нии до 121,55 пм для пер­во­го и до 122,77 пм для вто­ро­го воз­бу­ж­дён­но­го со­стоя­ния, что, в свою оче­редь, при­во­дит к ос­лаб­ле­нию свя­зи О–О и к уси­ле­нию хи­мич. ак­тив­но­сти К. Оба воз­бу­ж­дён­ных со­стоя­ния мо­ле­ку­лы О2 иг­ра­ют важ­ную роль в ре­ак­ци­ях окис­ле­ния в га­зо­вой фа­зе.

К. – газ без цве­та, за­па­ха и вку­са; tпл –218,3 °C, tкип –182,9 °C, плот­ность га­зо­об­раз­но­го К. 1428,97 кг/дм3 (при 0 °C и нор­маль­ном дав­ле­нии). Жид­кий К. – блед­но-го­лу­бая жид­кость, твёр­дый К. – си­нее кри­стал­лич. ве­ще­ст­во. При 0 °C те­п­ло­про­вод­ность 24,65·103 Вт/(м·К), мо­ляр­ная те­п­ло­ём­кость при по­сто­ян­ном дав­ле­нии 29,27 Дж/(моль·К), ди­элек­трич. про­ни­цае­мость га­зо­об­раз­но­го К. 1,000547, жид­ко­го 1,491. К. пло­хо рас­тво­рим в во­де (3,1% К. по объ­ё­му при 20 °C), хо­ро­шо рас­тво­рим в не­ко­то­рых фто­рор­га­нич. рас­тво­ри­те­лях, напр. пер­фтор­де­ка­ли­не (4500% К. по объ­ё­му при 0 °C). Зна­чит. ко­ли­че­ст­во К. рас­тво­ря­ют бла­го­род­ные ме­тал­лы: се­реб­ро, зо­ло­то и пла­ти­на. Рас­тво­ри­мость га­за в рас­плав­лен­ном се­реб­ре (2200% по объ­ё­му при 962 °C) рез­ко по­ни­жа­ет­ся с умень­ше­ни­ем темп-ры, по­это­му при ох­ла­ж­де­нии на воз­ду­хе рас­плав се­реб­ра «за­ки­па­ет» и раз­брыз­ги­ва­ет­ся вслед­ст­вие ин­тен­сив­но­го вы­де­ле­ния рас­тво­рён­но­го ки­сло­ро­да.

К. об­ла­да­ет вы­со­кой ре­ак­ци­он­ной спо­соб­но­стью, силь­ный окис­ли­тель: взаи­мо­дей­ст­ву­ет с боль­шин­ст­вом про­стых ве­ществ при нор­маль­ных ус­ло­ви­ях, в осн. с об­ра­зо­ва­ни­ем со­от­вет­ст­вую­щих ок­си­дов (мн. ре­ак­ции, про­те­каю­щие мед­лен­но при ком­нат­ной и бо­лее низ­ких темп-рах, при на­гре­ва­нии со­про­во­ж­да­ют­ся взры­вом и вы­де­ле­ни­ем боль­шо­го ко­ли­че­ст­ва те­п­ло­ты). К. взаи­мо­дей­ст­ву­ет при нор­маль­ных ус­ло­ви­ях с во­до­ро­дом (об­ра­зу­ет­ся во­да Н2О; сме­си К. с во­до­ро­дом взры­во­опас­ны – см. Гре­му­чий газ), при на­гре­ва­нии – с се­рой (се­ры ди­ок­сид SO2 и се­ры три­ок­сид SO3), уг­ле­ро­дом (уг­ле­ро­да ок­сид СО, уг­ле­ро­да ди­ок­сид СО2), фос­фо­ром (фос­фо­ра ок­си­ды), мн. ме­тал­ла­ми (ок­си­ды ме­тал­лов), осо­бен­но лег­ко со ще­лоч­ны­ми и щё­лоч­но­зе­мель­ны­ми (в осн. пе­рок­си­ды и над­пе­рок­си­ды ме­тал­лов, напр. пе­рок­сид ба­рия BaO2, над­пе­рок­сид ка­лия KO2). С азо­том К. взаи­мо­дей­ст­ву­ет при темп-ре вы­ше 1200 °C или при воз­дей­ст­вии элек­трич. раз­ря­да (об­ра­зу­ет­ся мо­но­ок­сид азо­та NO). Со­еди­не­ния К. с ксе­но­ном, крип­то­ном, га­ло­ге­на­ми, зо­ло­том и пла­ти­ной по­лу­ча­ют кос­вен­ным пу­тём. К. не об­ра­зу­ет хи­мич. со­еди­не­ний с ге­ли­ем, не­оном и ар­го­ном. Жид­кий К. так­же яв­ля­ет­ся силь­ным окис­ли­те­лем: про­пи­тан­ная им ва­та при под­жи­га­нии мгно­вен­но сго­ра­ет, не­ко­то­рые ле­ту­чие ор­га­нич. ве­ще­ст­ва спо­соб­ны са­мо­вос­пла­ме­нять­ся, ко­гда на­хо­дят­ся на рас­стоя­нии не­сколь­ких мет­ров от от­кры­то­го со­су­да с жид­ким ки­сло­ро­дом.

К. об­ра­зу­ет три ион­ные фор­мы, ка­ж­дая из ко­то­рых оп­ре­де­ля­ет свой­ст­ва отд. клас­са хи­мич. со­еди­не­ний: $ce{O2^-}$су­пер­ок­си­дов (фор­маль­ная сте­пень окис­ле­ния ато­ма К. –0,5),  $ce{O2^2^-}$пе­рок­сид­ных со­еди­не­ний (сте­пень окис­ле­ния ато­ма К. –1, напр. во­до­ро­да пе­рок­сид Н2О2), О2– – ок­си­дов (сте­пень окис­ле­ния ато­ма К. –2). По­ло­жи­тель­ные сте­пе­ни окис­ле­ния 1 и 2 К. про­яв­ля­ет во фто­ри­дах O2F2 и ОF2 со­от­вет­ст­вен­но. Фто­ри­ды К. не­ус­той­чи­вы, яв­ля­ют­ся силь­ны­ми окис­ли­те­ля­ми и фто­ри­рую­щи­ми реа­ген­та­ми.

Мо­ле­ку­ляр­ный К. яв­ля­ет­ся сла­бым ли­ган­дом и при­сое­ди­ня­ет­ся к не­ко­то­рым ком­плек­сам Fe, Co, Mn, Cu. Сре­ди та­ких ком­плек­сов наи­бо­лее ва­жен же­ле­зо­пор­фи­рин, вхо­дя­щий в со­став ге­мо­гло­би­на – бел­ка, ко­то­рый осу­ще­ст­в­ля­ет пе­ре­нос К. в ор­га­низ­ме те­п­ло­кров­ных.

Ссылки

Растворимость кислорода в водеMathcad Application Server

Таблица перевода «объемы и массы газа» | техногаз-сервис

Объемы и массы газов (коэффициенты перевода)

Наименование газа

масса, кг

объем

газ, м3

жидкость, л

Кислород

1,36

1

1,19

1,14

0,84

1

1

0,74

0,86

Азот

1,19

1

1,47

0,81

0,68

1

1

0,84

1,24

Аргон

1,69

1

1,22

1,39

0,82

1

1

0,59

0,72

Водород

0,085

1

1,2

0,071

0,83

1

1

11,7

14,1

Углекислота

1,87

1

1,59

1

0,53

0,85

1,18

0,63

1

Гелий

0,169

1

1,35

0,125

0,741

1

1

5,91

7,89

Ацетилен

1,11

1

1

0,902

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами.

Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), перекись водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

Физические свойства

Файл:AYool WOA surf O2.png

В мировом океане содержание растворённого O2 больше в холодной воде, а меньше — в тёплой.

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C).

Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C).
Межатомное расстояние — 0,12074 нм. Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Файл:Phase diagram of oxygen.png
Фазовая диаграмма O2

Твёрдый кислород (температура плавления −218,35°C) — синие кристаллы.
Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейкиa=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°[4].
  • β2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°[4].
  • γ2 — существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å[4].

Ещё три фазы образуются при высоких давлениях:

Фториды кислорода

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон).

Как установили в 1899 годуПьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3[6][7].

Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

  • Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
  • Некоторые оксиды поглощают кислород:
  • Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:
Оцените статью
Кислород
Добавить комментарий