- Атом и молекула кислорода. формула кислорода. строение кислорода:
- Взаимодействие титана с кислородом
- Кислород, свойства атома, химические и физические свойства.
- Общие сведения:
- Применение кислорода:
- Свойства атома титана:
- Степень окисления
- Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
- Таблица валентности химических элементов (1 часть):
- Таблица валентности химических элементов (2 часть):
- Таблица валентности химических элементов (3 часть):
- Титан(titanium)
- Физические свойства титана:
- Химические свойства титана
- Цирконий(zirconium) и гафний(hafnium)
Атом и молекула кислорода. формула кислорода. строение кислорода:
Кислород – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением О и атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.
Кислород самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы халькогенов.
Кислород – химически активный неметалл.
Кислород обозначается символом О.
Как простое вещество кислород (химическая формула O2) при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха. В жидком состоянии кислород имеет светло-голубой цвет, а в твёрдом – представляет собой кристаллы светло-синего цвета.
Молекула кислорода двухатомна. Также встречается аллотропная модификация кислорода – озон, молекула которого состоит из трёх атомов кислорода.
Химическая формула кислорода O2 (или O3 – озон).
Электронная конфигурация атома кислорода 1s2 2s2 2p4. Потенциал ионизации (первый электрон) атома кислорода равен 1313,94 кДж/моль (13,618055(7) эВ).
Строение атома кислорода. Атом кислорода (наиболее распространенный из трех изотопов кислорода (99,757 %) – 168О) состоит из положительно заряженного ядра ( 8), вокруг которого по атомным оболочкам движутся восемь электронов.
При этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поскольку кислород расположен во втором периоде, оболочки всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s- и р-орбиталями.
Два спаренных электрона находится на 1s-орбитали, вторая пара электронов – на 2s-орбитали. На 2р-орбитали находится два спаренных и два неспаренных электрона. Поэтому во всех своих соединениях кислород проявляет валентность II. В свою очередь ядро атома кислорода состоит из восьми протонов и восьми нейтронов. Кислород относится к элементам p-семейства.
Радиус атома кислорода (вычисленный) составляет 48 пм.
Атомная масса атома кислорода составляет 15,99903-15,99977 а. е. м.
Кислород – самый распространённый химический элемент на Земле. В земной коре на его долю в составе различных соединений приходится около 46 % массы. Морские и пресные воды содержат по массе 86 % кислорода (если быть точнее – 85,82 %). В человеке его содержание составляет по массе 61 %.
При высокой температуре молекула кислорода О2 обратимо диссоциирует на атомарный кислород. При 2000 °C на атомарный кислород диссоциирует 0,03 % молекулярного кислорода, при 2600 °C – 1 %, при 4000 °C – 59 %, при 6000 °C — 99,5 %.
Взаимодействие титана с кислородом
Кислород — основная примесь в титане и его сплавах. Она может: а) разрушить титан, образуя толстые и рыхлые слои окалины; б) создавать тонкие и плотные пленки оксидов, тем самым улучшать коррозионную стойкость титана; в) растворяться в титане, приводя к его упрочнению.
В общем случае реакцию взаимодействия твердого титана с кислородом можно описать в виде
где т — число атомов титана в молекуле оксида; п — валентность титана.
Диаграмма состояния системы титан—кислород приведена на рис. 1.5. Установлено, что в сплавах этой системы кроме твердого раствора кислорода в титане содержатся химические соединения ТЮ, Ti203 и ТЮ2 и возможно образование оксидов Ti302, Ti305, Ti60, Ti30.
Кислород резко увеличивает стабильность a-фазы. Растворимость кислорода в a-фазе при температуре 800— 1700 °С составляет около 15,5 %. Максимальная растворимость кислорода в р-титане 1,8 % наблюдается при перитектической температуре 1740 °С.
При температуре 925 °С в результате перитектической реакции a-твердого раствора кислорода в титане с концентрацией кислорода 15,5 % 02 и химического соединения ТЮ (у-фаза) с содержанием кислорода 23,5 % образуется 5-фаза, которой соответствует формула Ti302 или Ti403.
Рис. 1.5. Диаграмма состояния титан—кислород
Сплавы от 29,5 % до 32 % 02 двухфазны и состоят из смеси y(TiO) и Ti203. От 32,5 % до 34,5 % 02 располагается область гомогенной фазы Ti205. При более высоком содержании кислорода наблюдается двухфазная область Ti203 Ti305. При содержании кислорода свыше 37 % имеет место гомогенная область соединения ТЮ2 (/пл = 1840 °С).
Кинетика окисления титана при температурах до 350 °С описывается логарифмическим законом.
Когда титан находится в атмосфере кислорода, скорость окисления при температурах 350—850 °С подчиняется параболическому закону:
где Ат — увеличение массы образца; т — продолжительность взаимодействия; Кп — константа параболического окисления.
В интервале температур 850—1200 °С окисление титана вначале описывается параболическим законом, а затем линейным:
где Кя — константа линейного окисления.
В табл. 1.2 приведены значения константы параболической скорости окисления Кп, г2/(см2-с), на начальной стадии взаимодействия при температурах 1070—1220 °С.
Таблица 1.2. Константы параболической скорости окисления титана
Температура, °С | Константа параболического окисления А^ Ю10 | |
В кислороде | На воздухе | |
1070 | 1 | 1 |
1120 | 2,2 | 2,5 |
1170 | 6 | 5,5 |
1220 | 15 | 20 |
При высоких температурах оксидная пленка растворяется в металле. Обогащенный кислородом поверхностный слой металла, в котором кислород растворяется в а- и (или) p-фазах титана, называют диффузионным или газонасыщенным. В диффузионном слое выделяют альфированный и переходный слои. Альфирован- ный слой отличается по структуре от основного металла повышенным содержанием a-фазы. Диффузионный поверхностный слой имеет более высокую микротвердость, чем основной металл.
При температурах выше 800—900 °С наблюдается увеличение скорости разрушения оксидной пленки. Причиной разрушения являются сжимающие напряжения, возникающие в результате значительной разницы объемов оксида и металла. Молекулярный объем окалины на титане, состоящий из диоксида титана ТЮ2, в 1,6 раза больше, чем атомный объем титана.
Механизм взаимодействия титана с кислородом при наличии оксидной пленки не изучен полностью. Видимо, при окислении протекают параллельно два процесса — диффузия через пленку ионов титана и ионов кислорода, а также растворение кислорода в титане.
Изменение концентрации кислорода в металле от поверхности в глубину определяется коэффициентом диффузии и оказывается более резким при низком его значении.
Параметры диффузии кислорода в титане представлены в табл. 1.3.
Таблица 1.3. Параметры диффузии кислорода в титане
Металл | t,° С | Z)0105, м2/с | Q, кДж/моль |
a-Ti | 750-880 | 1,6 | 217,88 |
P-Ti | 900-1200 | 4,5 | 150,84 |
Рентгенографическое исследование выявило сильное влияние кислорода на параметры кристаллической решетки а-титана. С увеличением содержания кислорода отношение с/а приближается к 1,633, что соответствует идеальной плотноупакованной решетке.
На рис. 1.6 показано влияние кислорода на механические свойства титана.
Рис. 1.6. Влияние кислорода на механические свойства титана
Воздействуя на кристаллическую решетку, кислород изменяет физико-механические и технологические свойства титана. При внедрении в октаэдрические пустоты а-титана кислород сильно искажает решетку и при этом существенно возрастают твердость и прочность титана, а его пластичность резко снижается. В области концентраций кислорода до 0,2 % каждая 0,01 % кислорода повышает предел прочности и текучести примерно на 12,5 МПа.
Снижение пластичности титана при повышении содержания кислорода до 0,25 % относительно невелико, поэтому содержание кислорода ограничивают в титане и его сплавах до предела 0,10—0,2 %.
Кислород, свойства атома, химические и физические свойства.
О 8 Кислород
15,99903-15,99977* 1s2 2s2 2p4
Кислород — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.
Атом и молекула кислорода. Формула кислорода. Строение кислорода
Изотопы и модификации кислорода
Свойства кислорода (таблица): температура, плотность, давление и пр.
Физические свойства кислорода
Химические свойства кислорода. Взаимодействие кислорода. Реакции с кислородом
Получение кислорода
Применение кислорода
Таблица химических элементов Д.И. Менделеева
Общие сведения:
100 | Общие сведения | |
101 | Название | Титан |
102 | Прежнее название | |
103 | Латинское название | Titanium |
104 | Английское название | Titanium |
105 | Символ | Ti |
106 | Атомный номер (номер в таблице) | 22 |
107 | Тип | Металл |
108 | Группа | Амфотерный, переходный, цветной металл |
109 | Открыт | Уильям Грегор, Великобритания, 1791 г., Мартин Генрих Клапрот, Германия, 1795 г. |
110 | Год открытия | 1791 г. |
111 | Внешний вид и пр. | Лёгкий, прочный металл серебристо-белого цвета |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | 2 аллотропные модификации титана: — α-титан с гексагональной плотноупакованной решёткой, — β-титан с кубической объёмно-центрированной решеткой |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга* | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | |
119 | Содержание в земной коре (по массе) | 0,66 % |
120 | Содержание в морях и океанах (по массе) | 1,0·10-7 % |
121 | Содержание во Вселенной и космосе (по массе) | 0,0003 % |
122 | Содержание в Солнце (по массе) | 0,0004 % |
123 | Содержание в метеоритах (по массе) | 0,054 % |
124 | Содержание в организме человека (по массе) |
Применение кислорода:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Свойства атома титана:
200 | Свойства атома | |
201 | Атомная масса (молярная масса) | 47,867(1) а.е.м. (г/моль) |
202 | Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 3d2 4s2 |
203 | Электронная оболочка | K2 L8 M10 N2 O0 P0 Q0 R0 |
204 | Радиус атома (вычисленный)* | 176 пм |
205 | Эмпирический радиус атома* | 140 пм |
206 | Ковалентный радиус* | 160 пм |
207 | Радиус иона (кристаллический) | Ti2 100 (6) пм, Ti3 81 (6) пм, Ti4 56 (4) пм, 74,5 (6) пм (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | |
209 | Электроны, Протоны, Нейтроны | 22 электрона, 22 протона, 26 нейтронов |
210 | Семейство (блок) | элемент d-семейства |
211 | Период в периодической таблице | 4 |
212 | Группа в периодической таблице | 4-ая группа (по старой классификации – побочная подгруппа 4-ой группы) |
213 | Эмиссионный спектр излучения | ![]() |
Степень окисления
Степенью окисления (СО) называют условный показатель, который характеризует заряд атома в соединении и его поведение в ОВР (окислительно-восстановительной
реакции). В простых веществах СО всегда равна нулю, в сложных — ее определяют исходя из постоянных степеней окисления у некоторых элементов.
Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны,
образующие связи, перешли к более электроотрицательному элементу.
Определяя степень окисления, одним элементам мы приписываем условный заряд » «, а другим «-«. Это связано с электроотрицательностью —
способностью атома притягивать к себе электроны. Знак » » означает недостаток электронов, а «-» — их избыток. Повторюсь, СО — условное
понятие.
Сумма всех степеней окисления в молекуле равна нулю — это важно помнить для самопроверки.
Кто более электроотрицательный, тот сильнее притягивает к себе электроны и «уходит в минус». Кто отдает свои электроны и испытывает их недостаток —
получает знак » «.
Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2,
KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.
Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией 🙂 Однако по мере изучения химии, точное знание
степеней окисления должно заменить даже самую развитую интуицию 😉
Особо хочу выделить тему ионов. Ион — атом, или группа атомов, которые за счет потери или приобретения одного или нескольких
электронов приобрел(и) положительный или отрицательный заряд.
Определяя СО атомов в ионе, не следует стремиться привести общий заряд иона к «0», как в молекуле. Ионы даны в таблице растворимости, они имеют
разные заряды — к такому заряду и нужно в сумме привести ион. Объясню на примере.
Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
Валентность химических элементов – это способность у атомов химических элементов образовывать некоторое число химических связей. Определяется числом электронов атома затраченых на образование химических связей с другим атомом. Справочно: Электронные формулы атомов химических элементов.
Считается, что валентность химических элементов определяется группой (колонкой) Периодической таблицы . Действительно, теоретически, это самая распространенная валентность для элемента, но на практике поведение химических элементов значительно сложнее. Причина множественности значений валентности заключается в том, что существуют различные способы (или варианты) заполнения, при которых электронные оболочки стабилизируются. Поэтому, предлагаем Вашему вниманию таблицу валентностей химических элементов.
Числовое значение положительной валентности элемента равно числу отданных атомом электронов, а отрицательной валентности – числу электронов, которые атом должен присоединить для завершения внешнего энергетического уровня. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное..
|
Таблица валентности химических элементов (1 часть):
Атомный номер | Химический элемент | Символ | Валентность | Примеры соединений | Примечание |
1 | Водород | H | I | HCl, H2O2 | |
2 | Гелий | He | отсутствует | ||
3 | Литий | Li | I | LiOH, Li2O | |
4 | Бериллий | Be | I, II | ||
5 | Бор | B | III | B2O3 | |
6 | Углерод | C | II, IV | ||
7 | Азот | N | I, II, III, IV |
| В азотной кислоте (HNO3) и своем высшем оксиде (N2O5) атом азота образует только четыре ковалентные связи, являясь четырехвалентным |
8 | Кислород | O | II | (NO)F, CaO, O2, H2O2,Cl2O, H2O | |
9 | Фтор | F | I | HF, (NO)F | |
10 | Неон | Ne | отсутствует | ||
11 | Натрий | Na | I | Na2S, Na2O | |
12 | Магний | Mg | II | Mg(NO3)2 | |
13 | Алюминий | Al | III | Al2O3, Al2S3, AlCl3 | |
14 | Кремний | Si | II, IV | ||
15 | Фосфор | P | III, V |
| |
16 | Сера | S | II, IV, VI |
| |
17 | Хлор | Cl | I, III, IV, V, VI, VII |
| |
18 | Аргон | Ar | отсутствует | ||
19 | Калий | K | I | KOH, K2O, K2S | |
20 | Кальций | Ca | II | Ca(OH)2 | |
21 | Скандий | Sc | III | Sc2O3 | |
22 | Титан | Ti | II, III, IV | ||
23 | Ванадий | V | II, III, IV, V | ||
24 | Хром | Cr | II, III, VI | ||
25 | Марганец | Mn | II, III, IV, VI, VII |
| |
26 | Железо | Fe | II, III |
| |
27 | Кобальт | Co | II, III | ||
28 | Никель | Ni | II, III | ||
29 | Медь | Cu | I, II | ||
30 | Цинк | Zn | II | ZnSO4, ZnO, ZnS |
Таблица валентности химических элементов (2 часть):
31 | Галлий | Ga | I, II, III | ||
32 | Германий | Ge | II, IV | ||
33 | Мышьяк | As | III, V | ||
34 | Селен | Se | II, IV, VI | ||
35 | Бром | Br | I, III, V, VII | ||
36 | Криптон | Kr | отсутствует | ||
37 | Рубидий | Rb | I | RbOH | |
38 | Стронций | Sr | II | SrO | |
39 | Иттрий | Y | III | Y(NO3)3 | |
40 | Цирконий | Zr | II, III, IV | ||
41 | Ниобий | Nb | I, II, III, IV, V | ||
42 | Молибден | Mo | II, III, IV, V, VI |
| |
43 | Технеций | Tc | II, III, IV, V, VI, VII |
| |
44 | Рутений | Ru | II, III, IV, V, VI, VII, VIII |
| |
45 | Родий | Rh | II, III, IV, V, VI |
| |
46 | Палладий | Pd | II, IV | ||
47 | Серебро | Ag | I, II, III | ||
48 | Кадмий | Cd | I, II | ||
49 | Индий | In | I, II, III | ||
50 | Олово | Sn | II, IV | ||
51 | Сурьма | Sb | III, V | ||
52 | Теллур | Te | II, IV, VI | ||
53 | Йод | I | I, III, V, VII | ||
54 | Ксенон | Xe | отсутствует | ||
55 | Цезий | Cs | I | Cs2O | |
56 | Барий | Ba | II | Ba(OH)2 | |
57 | Лантан | La | III | La2(SO4)3 | |
58 | Церий | Ce | III, IV | ||
59 | Празеодим | Pr | II, III, IV | ||
60 | Неодим | Nd | II, III |
Таблица валентности химических элементов (3 часть):
61 | Прометий | Pm | III | PmBr3 | |
62 | Самарий | Sm | II, III | ||
63 | Европий | Eu | II, III | ||
64 | Гадолиний | Gd | II, III | ||
65 | Тербий | Tb | II, III, IV | ||
66 | Диспрозий | Dy | II, III | ||
67 | Гольмий | Ho | III | Ho2(SO4)3 | |
68 | Эрбий | Er | III | Er2O3 | |
69 | Тулий | Tm | II, III | ||
70 | Иттербий | Yb | II, III | ||
71 | Лютеций | Lu | III | LuBr3 | |
72 | Гафний | Hf | I, II, III, IV | ||
73 | Тантал | Ta | I, II, III, IV, V |
| |
74 | Вольфрам | W | II, III, IV, V, VI |
| |
75 | Рений | Re | I, II, III, IV, V, VI, VII |
| |
76 | Осмий | Os | I, II, III, IV, V, VI, VII, VIII |
| |
77 | Иридий | Ir | I, II, III, IV, V, VI |
| |
78 | Платина | Pt | II, III, IV, V, VI | ||
79 | Золото | Au | I, II, III, V | ||
80 | Ртуть | Hg | I, II | ||
81 | Таллий | Tl | I, II, III | ||
82 | Свинец | Pb | II, IV | ||
83 | Висмут | Bi | III, V | ||
84 | Полоний | Po | II, IV, VI | ||
85 | Астат | At | нет данных | ||
86 | Радон | Rn | отсутствует | ||
87 | Франций | Fr | I | FrOH | |
88 | Радий | Ra | II | Ra(OH)2 | |
89 | Актиний | Ac | III | Ac2O3 | |
90 | Торий | Th | II, III, IV | ||
91 | Протактиний | Pa | II, III, IV, V | ||
92 | Уран | U | III, IV, V, VI | ||
93 | Нептуний | Np | III, IV, V, VI, VII | ||
94 | Плутоний | Pu | III, IV, V, VI, VII | ||
95 | Америций | Am | II, III, IV, V, VI | ||
96 | Кюрий | Cm | II, III, IV | ||
97 | Берклий | Bk | III, IV | ||
98 | Калифорний | Cf | II, III, IV | ||
99 | Эйнштейний | Es | II, III | ||
100 | Фермий | Fm | II, III |
Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента.
Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.
Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента.
Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K2O, CO, N2O3, SiO2, SO3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.
С точки зрения электронной теории валентность определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии.
Известны элементы, которые проявляют постоянную валентность. У большинства химических элементов валентность переменная.
Коэффициент востребованности 5 698
Титан(titanium)
Титан входит в десятку самых распространённых элементов земной коры, в почвах и горных породах его обычно от 0,5 до 1,5 %. Однако некоторые местности особенно богаты титаном. Так, на острове Святой Елены, «где угасал Наполеон», содержание этого элемента достигает 2,5 %.
По сравнению с другими часто встречающимися металлами титан дороже, поскольку его очень сложно извлекать из руд: он исключительно прочно связан с кислородом. Как и все наиболее распространённые элементы, титан неизбежно присутствует в живых организмах.
У взрослого человека в селезенке, надпочечниках и щитовидной железе содержится примерно 20 мг титана. Однако его роль в точности пока не выяснена. Точно установлено, что титан совершенно не ядовит. В медицинской литературе описан случай, когда человек съел почти полкилограмма TiO2 – и никаких последствий.

Еще в начале ХХ в. никто не предполагал, что через каких-нибудь 30—50 лет малоизвестный металл титан войдет в число самых важных конструкционных материалов и сплавов, используемых в современной технике.
Однако все по порядку. Хотя минералы титана — рутил TiО2 и ильменит FeTiО6 широко распространены в природе, этот элемент долгие годы оказывался «в тени», его соединения не являлись предметом специальных исследований. Лишь в 1795 г. известный немецкий химик Мартин Клапрот выделю титан из рутила.
Новооткрытый элемент был назван в честь титанов – сыновей Урана (Неба) и Геи (Земли), низверженных Зевсом в царство тьмы. В 1910 г. металлический титан чистотой 99% удалось получить американскому исследователю Майклу Хантеру при восстановлении тетрахлорида титана металлическим натрием:
TiCl4 4Na → Ti 4NaCl.
Изучив свойства полученного металла, Хантер пришел к выводу, что большого будущего у титана нет – он слишком хрупок и непригоден к механической обработке. Прошло еще 15 лет, и два нидерландских химика А. ванн Аркель и И. де Бур, открыли новый способ получения тугоплавких металлов высокой степени чистоты.
Они нагревали титан с небольшим количеством йода в специальном приборе. Образующийся тетрайодид титана подвергался термическому разложению в вакууме, выделяющийся при этом титан конденсировался на раскаленной вольфрамовой нити, а освобождающийся йод вступал в реакцию с новой порцией титана, вновь образуя йодид.

Как оказалось, чистый титан обладает невероятной пластичностью – из него можно получить тончайшую фольгу. По прочности титан превосходит железо, а его коррозионная стойкость исключительно высока – металл можно хранить в морской воде. Наконец, титан тугоплавок (tпл = 1668оС).
Распространенность титана в земной коре очень велика, и хотя производство его обходится недешево, нет сомнений в том, что титан – металл не только нашего времени, но и будущего.
Физические свойства титана:
400 | Физические свойства | |
401 | Плотность* | 4,506 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело), 4,11 г/см3 (при 1668 °C и иных стандартных условиях, состояние вещества – жидкость) |
402 | Температура плавления* | 1668 °C (1941 K, 3034 °F) |
403 | Температура кипения* | 3287 °C (3560 K, 5949 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 14,15 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 425 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | 0,514 Дж/г·K (при 0 °C), 0,524 Дж/г·K (при 25 °C), 0,568 Дж/г·K (при 200 °C) |
410 | Молярная теплоёмкость* | 25,060 Дж/(K·моль) |
411 | Молярный объём | 10,62059 см³/моль |
412 | Теплопроводность | 21,9 Вт/(м·К) (при стандартных условиях), 21,9 Вт/(м·К) (при 300 K) |
413 | Коэффициент теплового расширения | 8,6 мкм/(М·К) (при 25 °С) |
414 | Коэффициент температуропроводности | |
415 | Критическая температура | |
416 | Критическое давление | |
417 | Критическая плотность | |
418 | Тройная точка | |
419 | Давление паров (мм.рт.ст.) | |
420 | Давление паров (Па) | |
421 | Стандартная энтальпия образования ΔH | |
422 | Стандартная энергия Гиббса образования ΔG | |
423 | Стандартная энтропия вещества S | |
424 | Стандартная мольная теплоемкость Cp | |
425 | Энтальпия диссоциации ΔHдисс | |
426 | Диэлектрическая проницаемость | |
427 | Магнитный тип | |
428 | Точка Кюри | |
429 | Объемная магнитная восприимчивость | |
430 | Удельная магнитная восприимчивость | |
431 | Молярная магнитная восприимчивость | |
432 | Электрический тип | |
433 | Электропроводность в твердой фазе | |
434 | Удельное электрическое сопротивление | |
435 | Сверхпроводимость при температуре | |
436 | Критическое магнитное поле разрушения сверхпроводимости | |
437 | Запрещенная зона | |
438 | Концентрация носителей заряда | |
439 | Твёрдость по Моосу | |
440 | Твёрдость по Бринеллю | |
441 | Твёрдость по Виккерсу | |
442 | Скорость звука | |
443 | Поверхностное натяжение | |
444 | Динамическая вязкость газов и жидкостей | |
445 | Взрывоопасные концентрации смеси газа с воздухом, % объёмных | |
446 | Взрывоопасные концентрации смеси газа с кислородом, % объёмных | |
446 | Предел прочности на растяжение | |
447 | Предел текучести | |
448 | Предел удлинения | |
449 | Модуль Юнга | |
450 | Модуль сдвига | |
451 | Объемный модуль упругости | |
452 | Коэффициент Пуассона | |
453 | Коэффициент преломления |
Химические свойства титана
Хотя прочная оксидная плёнка надежно защищает титан от окисления, он довольно легко растворяется в плавиковой и концентрированной соляной кислотах:
Ti 6HF = H2TiF6 2H2
2Ti 6HCl = 2TiCl3 3H2
Свойства титана удивительным образом изменяются при высоких температурах. Нагретый до 800 — 1000 оС, он реагирует не только с галогенами и кислородом, но и с бором, серой, углеродом и даже азотом, образуя твёрдые и хрупкие соединения, примеси которых сильно ухудшают механические свойства металла.
В соединениях титан проявляет, как правило, две степени окисления: 3 и 4. Белый тугоплавкий (tпл =1870 о С) порошок оксида титана (IV) TiO2 получается при сгорании титана в атмосфере кислорода. Прокаленный при высокой температуре TiО2 химически инертен и используется для приготовления титановых белил.
Свежеосажденный TiО2 проявляет свойства амфотерного оксида — растворяется в концентрированных щелочах и сильных кислотах с образованием бесцветных растворов титанатов и солей титанила TiО2 .
TiO2∙nH2O 2NaOH = Na2TiO3∙nH2O H2O
TiO2∙nH2O H2SO4 = TiOSO4 (n 1)H2O
При спекании TiО2 с оксидом, пероксидом или карбонатом щелочного или щёлочноземельного металла образуются безводные титанаты:
TiO2 K2CO3 = K2TiO3 CO2
2TiO2 2BaO2 = 2BaTiO3 O2
Титанат бария BaTiO3 (tпл= 1705оС) проявляет свойства пьезоэлектрика и используется в технике.
При производстве титана рутил TiО2 переводят в хлорид TiCl4 нагреванием с углём в токе хлора:
TiO2 2C 2Cl2 = TiCl4 2CO
Тетрахлорид титана TiCl4 — летучая бесцветная жидкость (tпл = -24 oС, = 136 оC), легко гидролизующаяся водой. Для получения металла ее восстанавливают натрием или магнием в атмосфере аргона. Такой способ производства титана гораздо проще, нежели прямое восстановление рутила.
Водные растворы соединений трёхвалентного титана окрашены в фиолетовый цвет. В инертной атмосфере они устойчивы, но кислород воздуха медленно окисляет их до производных Ti(IV). При действии щелочей на соли Ti(III) образуется пурпурный осадок гидроксида Ti(OH)3.
Поразительна химическая стойкость чистого титана, нередко она более высокая, чем у благородных металлов. На титан, например, не действуют хлорная вода, смесь концентрированных азотной и серной кислот и даже царская водка (золото во всех этих жидкостях растворяется).
Исключительно стоек титан и к коррозии. Если в морскую воду погрузить пластинки из алюминия, монеля (медно-никелевого сплава, который используется для чеканки монет), нержавеющей стали и титана толщиной 1 мм, их судьбы окажутся разными. Алюминиевая пластинка уже через несколько дней покроется серыми пятнами (точечная коррозия), а через пять месяцев разрушится.
Монелевая — станет тёмно-зелёной из-за взаимодействия меди и никеля с агрессивной морской водой, а примерно год спустя её постигнет судьба алюминиевой. Стальная пластинка продержится года четыре, постепенно покрываясь ржавыми пятнами.
Но и у титана есть своя «ахиллесова пята» — он очень «боится» соединений фтора. Во фтороводородной (плавиковой) кислоте обычно стойкий металл растворяется чуть ли не так же быстро, как магниевая стружка в соляной кислоте.
Цирконий(zirconium) и гафний(hafnium)

Вместе с титаном в состав побочной подгруппы IV группы входят цирконий и гафний. Цирконий был открыт М. Клапротом за несколько лет до титана – в 1789 г. Название ему дали по минералу циркону. Цирконий – не редкий, но рассеянный элемент. В земной коре его больше, чем меди, олова или цинка, однако распыленность циркония настолько велика, что его применение долгое время оставалось ограниченным из-за очень высокой стоимости производства.
Еще более рассеянным элементом оказался гафний. Его открыли голландец Дирк Костер и венгр Дьёрдь Хевеши в 1923 г. в виде примеси к цирконию. Гафний назвали в честь древнего наименования Копенгагена – Гафниа, хотя вначале для него предлагали имя «даний».
Химия циркония и гафния в целом похожа на химию титана. Следует отметить два основных отличия. Первое: для этих двух металлов характерна только одна степень окисления ( 4). Второе: цирконий и гафний еще более инертны, чем титан. Растворить их можно лишь в смеси плавиковой и концентрированной азотной кислот:
Zr 4HNO3 7HF = H3ZrF7 4NO2 4H2O
В этой реакции азотная кислота является окислителем, а плавиковая связывает ионы металла в прочный комплекс. При взаимодействии циркония с йодом образуется йодид циркония ZrI4 – желтое кристаллическое вещество, легко возгоняющееся при температуре около 430оС.
Оксид ZrO2 очень тугоплавок (tпл = 2700оС) и инертен при высоких температурах. С добавками оксидов иттрия или кальция его применяют как огнеупорный материал, используют в производстве защитных плёночных покрытий, а также тугоплавких и прочных стёкол.
