Кислород — описание вещества, фармакология, применение, противопоказания, формула
Официальный сайт компании РЛС®. Главная энциклопедия лекарств и товаров аптечного
ассортимента российского интернета. Справочник лекарственных препаратов lifeo2.ru
предоставляет пользователям доступ к инструкциям, ценам и описаниям лекарственных средств,
БАДов, медицинских изделий, медицинских приборов и других товаров. Фармакологический
справочник включает информацию о составе и форме выпуска, фармакологическом действии,
показаниях к применению, противопоказаниях, побочных действиях, взаимодействии лекарств,
способе применения лекарственных препаратов, фармацевтических компаниях. Лекарственный
справочник содержит цены на лекарства
и товары фармацевтического рынка в Москве и других городах России.
Запрещена передача, копирование, распространение информации без разрешения ООО
«РЛС-Патент», а также коммерческое использование материалов. При цитировании
информационных материалов, опубликованных на страницах сайта www.lifeo2.ru, ссылка на
источник информации обязательна.
Биологическая роль
К. как в свободном виде, так и в составе разл. веществ (напр., ферментов оксидаз и оксидоредуктаз) принимает участие во всех окислит. процессах, протекающих в живых организмах. В результате выделяется большое количество энергии, расходуемой в процессе жизнедеятельности.
Историческая справка
К. получили в 1774 независимо К. Шееле (путём прокаливания нитратов калия KNO3 и натрия NaNO3, диоксида марганца MnO2 и др. веществ) и Дж. Пристли (при нагревании тетраоксида свинца Pb3О4 и оксида ртути HgО). Позднее, когда было установлено, что К. входит в состав кислот, А. Лавуазье предложил назв. oxygène (от греч. ὀχύς – кислый и γεννάω – рождаю, отсюда и рус. назв. «К.»).
Получение
В пром. масштабах К. производят путём сжижения и фракционной перегонки воздуха (см. в ст. Воздуха разделение), а также электролизом воды. В лабораторных условиях К. получают разложением при нагревании пероксида водорода (2Н2О2= 2Н2О О2), оксидов металлов (напр., оксида ртути: 2HgO=2Hg O2), солей кислородсодержащих кислот-окислителей (напр., хлората калия: 2KClO3=2KCl 3O2, перманганата калия: 2KMnO4=K2MnO4 MnO2 O2), электролизом водного раствора NaOH. Газообразный К. хранят и транспортируют в стальных баллонах, окрашенных в голубой цвет, при давлении 15 и 42 МПа, жидкий К. – в металлич. сосудах Дьюара или в спец. цистернах-танках.
Применение
Технич. К. используют как окислитель в металлургии (см., напр., Кислородно-конвертерный процесс), при газопламенной обработке металлов (см., напр., Кислородная резка), в химич. пром-сти при получении искусств. жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и др. Чистый К. используют в кислородно-дыхательных аппаратах на космич. кораблях, подводных лодках, при подъёме на большие высоты, проведении подводных работ, в лечебных целях в медицине (см. в ст. Оксигенотерапия). Жидкий К. применяют как окислитель ракетных топлив, при взрывных работах. Водные эмульсии растворов газообразного К. в некоторых фторорганич. растворителях предложено использовать в качестве искусств. кровезаменителей (напр., перфторан).
Распространённость в природе.
К. – самый распространённый химич. элемент на Земле: содержание химически связанного К. в гидросфере составляет 85,82% (гл. обр. в виде воды), в земной коре – 49% по массе. Известно более 1400 минералов, в состав которых входит К. Среди них преобладают минералы, образованные солями кислородсодержащих кислот (важнейшие классы – карбонаты природные, силикаты природные, сульфаты природные, фосфаты природные), и горные породы на их основе (напр., известняк, мрамор), а также разл. оксиды природные, гидроксиды природные и горные породы (напр., базальт). Молекулярный К. составляет 20,95% по объёму (23,10% по массе) земной атмосферы. К. атмосферы имеет биологич. происхождение и образуется в зелёных растениях, содержащих хлорофилл, из воды и диоксида углерода при фотосинтезе. Количество К., выделяемое растениями, компенсирует количество К., расходуемое в процессах гниения, горения, дыхания. К. – биогенный элемент – входит в состав важнейших классов природных органич. соединений (белков, жиров, нуклеиновых кислот, углеводов и др.) и в состав неорганич. соединений скелета.
Свойства
Строение внешней электронной оболочки атома К. 2s22p4; в соединениях проявляет степени окисления –2, –1, редко 1, 2; электроотрицательность по Полингу 3,44 (наиболее электроотрицательный элемент после фтора); атомный радиус 60 пм; радиус иона О2– 121 пм (координац. число 2). В газообразном, жидком и твёрдом состояниях К. существует в виде двухатомных молекул О2. Молекулы О2 парамагнитны. Существует также аллотропная модификация К. – озон, состоящая из трёхатомных молекул О3.
В осн. состоянии атом К. имеет чётное число валентных электронов, два из которых не спарены. Поэтому К., не имеющий низкой по энергии вакантной d-орбитали, в большинстве химич. соединений двухвалентен. В зависимости от характера химич. связи и типа кристаллич. структуры соединения координац. число К. может быть разным: 0 (атомарный К.), 1 (напр., О2, СО2), 2 (напр., Н2О, Н2О2), 3 (напр., Н3О ), 4 (напр., оксоацетаты Ве и Zn), 6 (напр., MgO, CdO), 8 (напр., Na2O, Cs2O). За счёт небольшого радиуса атома К. способен образовывать прочные π-связи с др. атомами, напр. с атомами К. (О2, О3), углерода, азота, серы, фосфора. Поэтому для К. одна двойная связь (494 кДж/моль) энергетически более выгодна, чем две простые (146 кДж/моль).
Парамагнетизм молекул О2 объясняется наличием двух неспаренных электронов с параллельными спинами на дважды вырожденных разрыхляющих π*-орбиталях. Поскольку на связывающих орбиталях молекулы находится на четыре электрона больше, чем на разрыхляющих, порядок связи в О2 равен 2, т. е. связь между атомами К. двойная. Если при фотохимич. или химич. воздействии на одной π*-орбитали оказываются два электрона с противоположными спинами, возникает первое возбуждённое состояние, по энергии расположенное на 92 кДж/моль выше основного. Если при возбуждении атома К. два электрона занимают две разные π*-орбитали и имеют противоположные спины, возникает второе возбуждённое состояние, энергия которого на 155 кДж/моль больше, чем основного. Возбуждение сопровождается увеличением межатомных расстояний О–О: от 120,74 пм в осн. состоянии до 121,55 пм для первого и до 122,77 пм для второго возбуждённого состояния, что, в свою очередь, приводит к ослаблению связи О–О и к усилению химич. активности К. Оба возбуждённых состояния молекулы О2 играют важную роль в реакциях окисления в газовой фазе.
К. – газ без цвета, запаха и вкуса; tпл –218,3 °C, tкип –182,9 °C, плотность газообразного К. 1428,97 кг/дм3 (при 0 °C и нормальном давлении). Жидкий К. – бледно-голубая жидкость, твёрдый К. – синее кристаллич. вещество. При 0 °C теплопроводность 24,65·10—3 Вт/(м·К), молярная теплоёмкость при постоянном давлении 29,27 Дж/(моль·К), диэлектрич. проницаемость газообразного К. 1,000547, жидкого 1,491. К. плохо растворим в воде (3,1% К. по объёму при 20 °C), хорошо растворим в некоторых фторорганич. растворителях, напр. перфтордекалине (4500% К. по объёму при 0 °C). Значит. количество К. растворяют благородные металлы: серебро, золото и платина. Растворимость газа в расплавленном серебре (2200% по объёму при 962 °C) резко понижается с уменьшением темп-ры, поэтому при охлаждении на воздухе расплав серебра «закипает» и разбрызгивается вследствие интенсивного выделения растворённого кислорода.
К. обладает высокой реакционной способностью, сильный окислитель: взаимодействует с большинством простых веществ при нормальных условиях, в осн. с образованием соответствующих оксидов (мн. реакции, протекающие медленно при комнатной и более низких темп-рах, при нагревании сопровождаются взрывом и выделением большого количества теплоты). К. взаимодействует при нормальных условиях с водородом (образуется вода Н2О; смеси К. с водородом взрывоопасны – см. Гремучий газ), при нагревании – с серой (серы диоксид SO2 и серы триоксид SO3), углеродом (углерода оксид СО, углерода диоксид СО2), фосфором (фосфора оксиды), мн. металлами (оксиды металлов), особенно легко со щелочными и щёлочноземельными (в осн. пероксиды и надпероксиды металлов, напр. пероксид бария BaO2, надпероксид калия KO2). С азотом К. взаимодействует при темп-ре выше 1200 °C или при воздействии электрич. разряда (образуется монооксид азота NO). Соединения К. с ксеноном, криптоном, галогенами, золотом и платиной получают косвенным путём. К. не образует химич. соединений с гелием, неоном и аргоном. Жидкий К. также является сильным окислителем: пропитанная им вата при поджигании мгновенно сгорает, некоторые летучие органич. вещества способны самовоспламеняться, когда находятся на расстоянии нескольких метров от открытого сосуда с жидким кислородом.
К. образует три ионные формы, каждая из которых определяет свойства отд. класса химич. соединений: $ce{O2^-}$– супероксидов (формальная степень окисления атома К. –0,5), $ce{O2^2^-}$ – пероксидных соединений (степень окисления атома К. –1, напр. водорода пероксид Н2О2), О2– – оксидов (степень окисления атома К. –2). Положительные степени окисления 1 и 2 К. проявляет во фторидах O2F2 и ОF2 соответственно. Фториды К. неустойчивы, являются сильными окислителями и фторирующими реагентами.
Молекулярный К. является слабым лигандом и присоединяется к некоторым комплексам Fe, Co, Mn, Cu. Среди таких комплексов наиболее важен железопорфирин, входящий в состав гемоглобина – белка, который осуществляет перенос К. в организме теплокровных.