Составление химических формул по валентности — параграф 17 ГДЗ химия 8 Рудзитис

Составление химических формул по валентности - параграф 17 ГДЗ химия 8 Рудзитис Кислород
Содержание
  1. Основное и возбужденное состояние фосфора
  2. Составление формулы оснований
  3. Валентность — как определить? примеры и определение
  4. Валентность серы в соединениях
  5. Вопросы:
  6. Гдз химия 7 класc габриелян о.с. , остроумов и.г., сладков с.а., 2022, §20 валентность
  7. Общие сведения о валентности серы
  8. Оксид фосфора (iii), триоксид фосфора (p2o3)
  9. Оксид фосфора (v), пентаоксид фосфора, фосфорный ангидрид (р2о5)
  10. Оксид фосфора v — p2o5
  11. Ортофосфорная кислота, фосфорная кислота (н3рo4)
  12. Понятие валентность
  13. Природные соединения
  14. Соли ортофосфорной кислоты (ортофосфаты, фосфаты)
  15. Соли фосфористой кислоты (фосфиты)
  16. Соли фосфорной кислоты
  17. Составление формулы кислот
  18. Составление формулы оксидов по валентности элементов
  19. Составление формулы солей
  20. Составьте формулы соединений, образованных химическими элементами с постоянной валентностью: калием и водородом; магнием и кислородом; алюминием и кислородом; кальцием и фтором; бором и кислородом, бором и водородом, барием и фтором. — знания.site
  21. Таблица валентности химических элементов (1 часть):
  22. Таблица валентности химических элементов (2 часть):
  23. Таблица валентности химических элементов (3 часть):
  24. Таблица валентности химических элементов.
  25. Таблица характерных значений валентностей некоторых атомов химических соединений.
  26. Таблица элементов с постоянной валентностью.
  27. Фосфиды
  28. Фосфин (ph3)
  29. Фосфористая кислота ( h3po3)
  30. Фосфорные кислоты
  31. Фосфорные удобрения

Основное и возбужденное состояние фосфора

При возбуждении атома фосфора электроны на s-подуровне распариваются и переходят на d-подуровень.

Составление формулы оснований

Важный нюанс, который неободимо знать — группы атомов могут рассматриваться, как единое целое.

Составление формул оснований по валентности элементов отличается от составления формулы оксидов лишь тем, что вместо атома кислорода в формуле стоит гидроксогруппа OH. В случае, если гидроксогруппа в формуле повторяется несколько раз, она берется в скобки.

В качестве примера составим составим формулу гидроксида магния.

На первом месте в основаниях стоит атом металла, гидроксогруппа — на втором.

  1. Mg OH
  2. MgII OHI
  3. НОК = 2·1 = 2
  4. для Mg: 2:2=1; OH: 2:1=2
  5. Ca(OH)2

Валентность — как определить? примеры и определение

Валентность азота в данном химическом соединении равна трем.

Как определить валентность элемента, шаг 4

Встречаются бинарные соединения (то есть соединения, состоящие только из двух видов атомов), в которых неизвестны валентности обоих атомов элементов. Как найти валентности химических элементов в этом случае?

Для определения значения валентности необходимо запомнить, что неметаллы в бинарных соединениях, расположенные на втором месте, проявляют свою низшую валентность.

Например, в сульфидах (FeS) сера расположена на втором месте и проявляет низшую валентность, равную двум.

Тогда валентность железа в данном сульфиде можно рассчитать по приведенному выше алгоритму — ее значение равно двум.

Расчет валентности в соединении, где неизвестны валентности обоих элементов

В хлоридах (например, AgCl) хлор проявляет низшую валентность, равную единице.

Валентность серы в соединениях

Сера — шестнадцатый по счету элемент Периодической таблицы Д.И. Менделеева. Она находится в третьем периоде в VIA группе. В ядре атома серы содержится 16 протонов и 16 нейтронов (массовое число равно 32). В атоме серы есть три энергетических уровня, на которых находятся 16 электронов (рис. 1).

Электронная формула атома серы в основном состоянии имеет следующий вид:

1s22s22p63s23p4.

А энергетическая диаграмма (строится только для электронов внешнего энергетического уровня, которые по-другому называют валентными):

Наличие двух неспаренных электронов свидетельствует о том, что сера способна проявлять валентность II в своих соединениях (H2SII).

Для атома серы характерно наличие нескольких возбужденных состояний из-за того, что орбитали 3d-подуровня являются вакантными (на третьем энергетическом слое помимо 3s- и 3p-подуровней есть еще и 3d-подуровень). Сначала распариваются электроны 3p -подуровня и занимают свободные d-орбитали, а после – электроны 3s-подуровня:

Наличие четырех и шести неспаренных электронов в возбужденном состоянии свидетельствует о том, что сера проявляет в своих соединениях валентности IV (SIVO2, H2SIVO3, Na2SIVO3) и VI (SVIO3, H2SVIO4, CaSVIO4).

Вопросы:

1. Составьте формулы сложных веществ, образованных элементом кислородом и следующими элементами:

Mn(VII), Cr(VI), Sb(V), Sn(IV), Cr(III), N(II), Hg(I).

2. Перепишите формулы и обозначьте римскими цифрами валентность элементов в соединениях с хлором, зная, что в данных соединениях он одновалентен:

КО, CaCl2, FeCl3, PCl5, ZnCl2, CrCl3, SiCl4.

3. Медь образует с кислородом два оксида — Cu2O и CuO. Составьте формулы соединений меди с серой, в которых сера проявляет такие же значения валентности, как в указанных соединениях с кислородом.

Гдз химия 7 класc габриелян о.с. , остроумов и.г., сладков с.а., 2022, §20 валентность

ГДЗ Химия 7 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А., 2022, §20 ВАЛЕНТНОСТЬ

Красным цветом приводится решениеа фиолетовым ― объяснение. 

ПРАВИЛО чётности-нечётности:

элементы, расположенные в группах с чётными номерами, проявляют чётные значения валентности, а

для элементов нечётных групп характерны нечётные значения валентности.

ПРОВЕРЬТЕ СВОИ ЗНАНИЯ

Упражнение 1.

Запишите формулы оксидов железа и меди, т. е. бинарных соединений с кислородом. Данные о валентностях элементов приведены в параграфе.

Ответ: 

Fe2O3, FeO, Cu2O, CuO.
Объяснение.
Для оксида железа (III). Записываем химические символы элементов, а над ними валентность элементов: FeIIIОII. Наименьшее общее кратное валентностей обоих элементов равно шесть и делим его на величину валентности каждого из элементов (6:3=2 и 6:2=3) ― это индексы, которые ставим у символа соответствующего химического элемента. Итак, формула Fe2O3

Для оксида железа (II). Записываем химические символы элементов, а над ними валентность элементов: FeIIОII. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:2=1 и 2:2=1) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула FeО
Для оксида меди (I). Записываем химические символы элементов, а над ними валентность элементов: СuIОII. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:1=2 и 2:2=1) ― это индексы, которые ставим у символа соответствующего химического элемента. Итак, формула Сu2О
Для оксида меди (II). Записываем химические символы элементов, а над ними валентность элементов: CuIIОII. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:2=1 и 2:2=1) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула СuО

Упражнение 2. Сера образует два оксида, формулы которых SO2 и SO3. Какие названия имеют эти оксиды? Оксид серы (IV) и oксид серы (VI).
В каком из них содержание серы выше? Ответ подтвердите расчётами.
Дано: оксиды SO2 и SO3
Найти: ω1(S) —?, ω2(S) —?
Решение.
1.
Рассчитываем массовую долю cеры в SO2.
Mr(SO2)=Ar(S) 2•Ar(O)=32 2•16=64

ω1(S)=(Ar(S)/Mr(SO2))•100%=(32:64)•100%=50%
2. Рассчитываем массовую долю cеры в SO3.
Mr(SO3)=Ar(S) 3•Ar(O)=32 3•16=80
ω2(S)=(Ar(S)/Mr(SO3))•100%=(32:80)•100%=40%
Ответ: в оксиде SO2 массовая доля серы больше, чем в оксиде SO3.

Упражнение 3. Рассчитайте массовую долю фосфора в оксиде фосфора (III) и оксиде фосфора (V).
Дано: оксиды P2O3 и P2O5
Найти: ω1(P) —?, ω2(P) —?
Решение.
1. Рассчитываем массовую долю cеры в Р2O3.
Mr(P2O3)=2•Ar(P) 3•Ar(O)=2•31 3•16=110
ω1(P)=(2•Ar(P)/Mr(P2O3))•100%=(2•31:110)•100%=56,36%
2. Рассчитываем массовую долю cеры в Р2О5.
Mr(P2O5)=2•Ar(P) 5•Ar(O)=2•31 5•16=142
ω2(P)=(2•Ar(P)/Mr(P2O5))•100%=(2•31:142)•100%=43,66%
Ответ: в оксиде P2O3 массовая доля фосфора больше, чем в оксиде P2O5.

Упражнение 4. Назовите вещества, формулы которых:
FeS – сульфид железа (II),
Аl2S3сульфид алюминия,
SCl2хлорид серы (II),
SCl4 хлорид серы (IV),
СО – оксид углерода (II),
СO2 оксид углерода (IV),
Na3Р – фосфид натрия,
Са3Р2фосфид кальция.

Упражнение 5. Запишите формулы хлоридов — бинарных соединений элементов с одновалентным хлором: углерода (IV), калия, азота (III), меди (I), меди (II), железа (II), железа (III), свинца (II).
Ответ: CCl4, KCl, NCl3, CuCl, CuCl2, FeCl2, FeCl3, PbCl2
Объяснение.
Для хлорида углерода (IV). Записываем химические символы элементов, а над ними валентность элементов: CIVClI. Наименьшее общее кратное валентностей обоих элементов равно четыре и делим его на величину валентности каждого из элементов (4:4=1 и 4:1=4) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула CCl4

Для хлорида калия. Записываем химические символы элементов, а над ними валентность элементов: KIClI. Наименьшее общее кратное валентностей обоих элементов равно один и делим его на величину валентности каждого из элементов (1:1=1 и 1:1=1) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула KCl
Для хлорида азота (III). Записываем химические символы элементов, а над ними валентность элементов: NIIIClI. Наименьшее общее кратное валентностей обоих элементов равно три и делим его на величину валентности каждого из элементов (3:3=1 и 3:1=3) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула NCl3
Для хлорида меди (I). Записываем химические символы элементов, а над ними валентность элементов: CuIClI. Наименьшее общее кратное валентностей обоих элементов равно один и делим его на величину валентности каждого из элементов (1:1=1 и 1:1=1) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула СuСl

Для хлорида меди (II). Записываем химические символы элементов, а над ними валентность элементов: CuIIClI. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:2=1 и 2:1=2) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула СuCl2
Для хлорида железа (II). Записываем химические символы элементов, а над ними валентность элементов: FeIIClI. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:2=1 и 2:1=2) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула FeCl2
Для хлорида железа (III). Записываем химические символы элементов, а над ними валентность элементов: FeIIIClI. Наименьшее общее кратное валентностей обоих элементов равно три и делим его на величину валентности каждого из элементов (3:3=1 и 3:1=3) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула FeCl3
Для хлорида свинца (II). Записываем химические символы элементов, а над ними валентность элементов: PbIIClI. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:2=1 и 2:1=2) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула  PbCl2

Упражнение 6. В 150 л смеси оксида серы (IV) с оксидом углерода(IV) объёмная доля последнего составляет 15%. Сколько литров каждого из оксидов содержится в смеси?
Дано: V(смеси)=150 л, ϕ(СО2) =15%, или 0,15
Найти: V(SО2)-?, V(СО2)-?
Решение.

1-й способ
1.
C формулы нахождения объёмной доли ϕ(СО2)=V(СО2)/V(смеси) находим объём оксида углерода(IV):
V(СО2) = ϕ(СО2)•V(смеси) = 0,15•150 л = 22,5 л
2.
Рассчитываем объём оксида серы (IV):
V(SО2) = V(смеси) — V(СО2) = 150 л – 22,5 л = 127,5 л

2-й способ
1. Рассчитываем объём оксида углерода(IV):
V(СО2) = ϕ(СО2)•V(смеси) = 0,15•150 л = 22,5 л
2.
Рассчитываем объём оксида серы (IV):
V(SО2) = ϕ(SО2)•V(смеси) = (1-ϕ(СО2))•V(смеси)=(1-0,15)•150 л =0,85•150 л = 127,5 л.

Ответ:  V(СО2) =22,5 л, V(SО2)=127,5 л

ПРИМЕНИТЕ СВОИ ЗНАНИЯ
Упражнение 1. Составьте формулы соединений, состоящих из пар элементов: натрия и водорода, алюминия и фтора, бора и кислорода, кислорода и магния.
Ответ: NaH, AlF3, B2O3, MgO
Объяснение.
Для натрия и водорода. Записываем химические символы элементов, а над ними валентность элементов: NaIНI. Наименьшее общее кратное валентностей обоих элементов равно один и делим его на величину валентности каждого из элементов (1:1=1 и 1:1=1) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула NaH

Для алюминия и фтора. Записываем химические символы элементов, а над ними валентность элементов: AlIIIFI. Наименьшее общее кратное валентностей обоих элементов равно три и делим его на величину валентности каждого из элементов (3:3=1 и 3:1=3) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула AlF3
Для бора и кислорода. Записываем химические символы элементов, а над ними валентность элементов: BIIIOII. Наименьшее общее кратное валентностей обоих элементов равно шесть и делим его на величину валентности каждого из элементов (6:3=2 и 6:2=3) ― это индексы, которые ставим у символа соответствующего химического элемента. Итак, формула B2O3

Для магния и кислорода. Записываем химические символы элементов, а над ними валентность элементов: MgIIOII. Наименьшее общее кратное валентностей обоих элементов равно два и делим его на величину валентности каждого из элементов (2:2=1 и 2:2=1) ― это индексы, которые ставим у символа соответствующего химического элемента (на письме 1 не пишем). Итак, формула MgO

Упражнение 2. В предыдущих параграфах вы знакомились с рудами железа. Найдите минералогические названия этих руд и установите соответствие с химическими названиями основных веществ, содержащихся в них.
Магнитный железняк ― оксид железа (II),(III) Fe3O4(железо и кислород).
Красный железняк ― оксид железа (III) Fe2O3
(железо и кислород).
Железный колчедан ― cульфид железа (II) FeS2
(железо и сера).

Общие сведения о валентности серы

При обычном давлении сера образует хрупкие кристаллы желтого цвета, плавящиеся при температуре 112,8oС. Плотность 2,07 г/см3. Нерастворима в воде, но довольно хорошо растворима в сероуглероде, бензоле и некоторых других жидкостях.

Если расплавленную серу медленно охлаждать и в тот момент, когда она частично затвердевает слить еще не успевшую застыть жидкость можно получить длинные темно-желтые игольчатые кристаллы моноклинной системы (моноклинная модификация). Плотность 1,96 г/см3. Температура плавления 119,3oС.

Оксид фосфора (iii), триоксид фосфора (p2o3)

Способы полученияоксида фосфора (III)

  • Р2О3 образуется при горении фосфора в недостатке кислорода или его медленном окислении:

4Р 3О2 = 2Р2О3

Физические свойстваоксида фосфора (III)

При комнатной температуре Р2О3 — белая воскообразная масса с неприятным запахом. Легко испаряется, его Тпл = 23,5°С

Пары существует в виде
димеров Р4О6.

!Очень ядовит

Химические свойстваоксида фосфора (III)

  • Р2О3 как кислотный оксид при взаимодействии с водой образует фосфористую кислоту:

Р2О3 ЗН2О =2H3PO3

  • Реакция диспропорционирования происходит очень бурно при растворении Р2О3вгорячей воде:

2Р2О3 6Н2О = РН3 ЗH3PO4

  • При взаимодействии Р2О3 с щелочами образуются соли фосфористой кислоты:

Р2О3 4NaOH = 2Na2HPO3 Н2О

  • При взаимодействии с окислителями P2O3 проявляет восстановительные свойства:

Окисление кислородом воздуха:

Р2О3 О2 = Р2О5

Окисление галогенами:

Р2О3  2Cl2  5Н2О = 4HCl 2H3PO4

Оксид фосфора (v), пентаоксид фосфора, фосфорный ангидрид (р2о5)

Способы полученияфосфорного ангидрида

Сжигание фосфора в избытке воздуха:

4Р 5О2 = 2Р2О5

Физические свойствафосфорного ангидрида

При комнатной
температуре Р2О5 — белые стеклообразные хлопья без запаха. Существует в виде
димеров Р4О10.

Очень гигроскопична, при
соприкосновении с воздухом расплывается в сиропообразную жидкость (НРO3). Р2О5 — самое эффективное осушающее средство и
водоотнимающий агент. Применяется для осушения нелетучих веществ и газов.

Химические свойствафосфорного ангидрида

Р2О5проявляет кислотные свойства.

Как кислотный оксид Р2О5 взаимодействует:

  • с водой, с образованием различных кислот:

Р2О5 Н2О = 2HPO3 метафосфорная

Р2О5 2Н2О = Н4Р2О7 пирофосфориая
(дифосфорная)

Р2О5 ЗН2О = 2H3PO4 ортофосфорная

  • с основными оксидами, с образованием фосфатов

Р2О5 ЗВаО = Ва3(PO4)2

  • с щелочами, с образованием средних и кислых солей

Р2О5 6NaOH = 2Na3PO4 ЗН2О

Р2О5 4NaOH = 2Na2HPO4 Н2О

Р2О5 2NaOH = 2NaH2PO4 Н2О

  • Фосфорный ангидрид способен отнимать у других веществ не только гигроскопическую влагу, но и химически связанную воду. Например, он дегидратирует оксокислоты, что широко используется для получения ангидридов кислот:

Р2О5 2HNО3 = 2HPO3 N2О5

Р2О5 2НСlО4 = 2HPO3 Сl2О7

P2O5 H2SO4 → 2HPO3 SO3

P2O5 2CH3COOH → 2HPO3 (CH3CO)2O

ВидеоопытВзаимодействие оксида фосфора с водой

Оксид фосфора v — p2o5


Кислотный оксид, пары которого имеют формулу P4O10. Твердый оксид характеризуется белым цветом.

Получение

P O2 → P2O5

Химические свойства

Ортофосфорная кислота, фосфорная кислота (н3рo4)

Способы полученияфосфорной кислоты

В промышленности Н3РO4 получают двумя способами:

  • Разложением природного соединения – фосфата кальция Са3(РO4)2 серной кислотой:

Са3(РO4)2 3H2SO4 = 2Н3РO4 3CaSO4↓

  • Доменный (термический) 3х-стадийный способ:

1 стадия — восстановление природных фосфоритов коксом

2 стадия – окисление получающихся паров свободного фосфора кислородом воздуха

3 стадия – орошение водой получающейся окиси фосфора:

Лабораторный способ

  • Н3РO4 получают окислением фосфора азотной кислотой:

ЗР 5HNO3 2Н2О = ЗН3РO4 5NO↑

  • Взаимодействием фосфорного ангидрида с водой:

Р2О5 ЗН2О = 2H3PO4

Физические свойства, строениефосфорной кислоты

При обычной
температуре безводная Н3РO4 – прозрачное, легкоплавкое (Тпл = 42°С)
кристаллическое вещество. Н3РO4 -очень гигроскопичное вещество и смешивается с
водой в любых соотношениях. Н3РO4 с небольшим количеством воды образует
сиропообразную, вязкую жидкость.

Степень
окисления фосфора в фосфорной кислоте равна 5, валентность равна V.

При
нагревании орто-фосфорной кислоты выше 213 °C, она переходит в пирофосфорную H4P2O7.

При нагревании выше 700°С переходит в
метафосфорную кислоту HPO3:

Качественные реакциидля обнаружения фосфат-иона

Для обнаружения анионов фосфорной кислоты используют раствор AgNO3, при помощи которого также можно различить мета-, пиро- и ортофосфорные кислоты друг от друга.

При
добавлении AgNO3 к кислотам образуются осадки
различного цвета:

  • метафосфат серебра AgPO3— белый
  • пирофосфат серебра Ag4P2O7 – также белый, но он не свертывает яичного белка
  • ортофосфат серебра Ag3PO4— желтый:

Н3PO4 3AgNO3 → Ag3PO4↓ 3НNO3

ВидеоКачественная реакция на фосфат-ион

Химические свойствафосфорной кислоты

Фосфорная кислота H3PO4 – это электролит средней силы
и представляет собой трехосновную кислоту.

Диссоциация протекает в основном по 1-й ступени:

Н3РO4 → Н Н2РO4—

По 2-й и 3-й ступеням диссоциация протекает в ничтожно
малой степени:

Н2РO4— → Н НРO42-

НРO42- → Н РO43-

  • Н3РO4 проявляет все общие свойства кислот — взаимодействует с активными металлами:

2Н3РO4 6Na = 2Na3РO4 3H2

2Н3РO4 ЗСаО = Са3(РO4)2 ЗН2О

2H3PO4 3MgO = Mg3(PO4)2 3H2O

  • с основаниями образует три ряда солей – одно-, двух- и трехзамещенные (кислые и средние соли):

Н3РO4 NaOH = NaH2PO4 Н2О

Н3РO4 2NaOH = Na2HPO4 2Н2О

Н3РO4 3NaOH = Na3PO4 ЗН2О

  • с аммиаком образует соли аммония:

Н3РO4 NH3 = NH4H2PO4

Н3РO4 2NH3 = (NH4)2HPO4

  • Вытесняет более слабые кислоты из их солей
    (карбонатов, сульфидов и др.). Также вступает в обменные реакции с солями:

Н3PO4 3NaHCO3 → Na3PO4 CO2 3H2O

  • При нагревании H3PO4 выше 200°С происходит отщепление молекулы воды с образованием пирофосфорной кислотыH2P2O7:

2H3PO4 → H2P2O7 H2O

В отличие от
аниона NO3— в азотной
кислоте, анион РO43- окисляющим
действием не обладает.

Понятие валентность

Таким образом, в настоящее время под валентностью химического элемента обычно понимается его способность (в более узком смысле – мера его способности) к образованию химических связей. В представлении метода валентных связей числовое значение валентности соответствует числу ковалентных связей, которые образует атом.

Природные соединения

В природе фосфор встречается в виде следующих соединений:

  • 3Ca3(PO4)2*CaCO3*Ca(OH,F)2 — фосфорит
  • Ca10(PO4)6(F,Cl,OH)2 — апатит

Получение


В промышленности фосфор получают в ходе сплавления фосфата кальция, песка и угля.

Ca3(PO4)2 SiO2 C → (t) CaSiO3 P CO

Химические свойства

Химическая активность фосфора значительно выше, чем у азота. Активность также определяется аллотропной модификацией: наиболее активен белый
фосфор, излучающий видимый свет из-за окисления кислородом.


В жидком и газообразном состоянии до 800 °C фосфор состоит из молекул P4. Свыше 800 °C молекулы P4 распадаются до
P2.

Соли ортофосфорной кислоты (ортофосфаты, фосфаты)

Способы полученияфосфатов

Получают
кислоты с металлами, оксидами металлов, гидроксидами (см. Химические свойства
ортофосфорной кислоты)

Физические свойствафосфатов

Н3РO4 является 3х-основной кислотой, поэтому образует 3 типа солей:

Анион соли Название Растворимость в воде Примеры солей
PO43-Фосфат (ортофосфат)большинство нерастворимы (кроме фосфатов щелочных металлов и аммония)Na3РO4; Са3(РO4)2
HPO42-ГидрофосфатрастворимыNa2НРO4; СаНРО4
Н2РO4Дигидрофосфаточень хорошо растворимыNaH2PO4; Са(Н2РO4)2

Химические свойствафосфатов

  • Имеют свойства, характерные для солей.

Na3РO4 Н2О = Na2HPO4 NaOH

  • Характерная особенность ортофосфатов – отношение к прокаливанию: однозамещенные соли переходят в метафосфаты, двухзамещенные – в пирофосфаты, из трехзамещенных изменяются только соли аммония:

NaH2PO4 = NaPO3 H2O

Na2HPO4 = Na4P2O7
H2O

(NH4)3PO4 = 3NH3 H2O

Соли фосфористой кислоты (фосфиты)

Способы полученияфосфитов

  • Взаимодействие фосфористой кислоты с щелочами:

Н2[НРО3] NaOH = NaH[HРО3] Н2О

Н2[НРО3] 2NaOH = Na2[HРО3] 2Н2О

  • взаимодействие фосфористой кислоты с металлами с выделением Н2

Н2[НРО3] Ca = Ca[HРО3] Н2

  • взаимодействие фосфористой кислоты с оксидами металлов

Н2[НРО3] CaO = Ca[HРО3] Н2O

  • диспропорционирование фосфора в горячем, концентрированном растворе щелочи:

P4 8NaOH(конц) 4H2O = Na2[HРО3] 6H2

  • Взаимодействие трихлорида фосфора с разбавленным раствором щелочи:

PCl3 5NaOH(разб) = Na2[HРО3] 3NaCl 2H2O

Физические свойствафосфитов

Двухосновная фосфористая кислота образует два типа солей:

а) однозамещенные фосфиты (кислые соли), в молекулах которых атомы металлов связаны с анионами Н2РО3, например: NaH2PO3, Са(H2PO3)

б) двухзамещенные фосфиты (средние соли), в молекулах которых атомы металлов связаны с 2 или 1 анионом HPO3, например: Na2HPO3, СаHPO3.

Хорошо
растворимы в воде только фосфиты щелочных металлов и кальция, остальные фосфиты
плохо растворимы.

Химические свойствафосфитов

Имеют
химические свойства, характерные для солей

Соли фосфорной кислоты


Соли фосфорной кислоты получаются в ходе реакции ортофосфорной кислоты и оснований.

3Ca(OH)2 2H3PO4 = Ca3(PO4)2 6H2O

Фосфаты являются хорошими удобрениями, которые повышают урожайность. Перечислим наиболее значимые:

  • Фосфоритная мука — Ca3(PO4)2
  • Простой суперфосфат — смесь Ca(H2PO4)2*H2O и CaSO4
  • Двойной суперфосфат — Ca(H2PO4)2*H2O
  • Преципитат — CaHPO4*2H2O
  • Костная мука — продукт переработки костей домашних животных Ca3(PO4)2
  • Аммофос — в основном состоит из моноаммонийфосфата — NH4H2PO4

Составление формулы кислот

На первом месте в формуле кислот стоит атом(ы) водорода, кислотный остаток — на втором.

В качестве примера составим формулу серной кислоты.

  1. H SO4
  2. HI SO4II
  3. НОК = 2·1 = 2
  4. для H: 2:1=2; SO4: 2:2=1
  5. H2SO4

Потренируемся в решении обратной задачи, когда по готовой формуле надо определить валентность элементов.

Составление формулы оксидов по валентности элементов

В качестве примера составим формулу оксида железа (III).

  1. В оксид железа входят железо и кислород: Fe O;
  2. Указываем валентность этих элементов: FeIII OII;
  3. Находим наименьшее общее кратное (НОК): 3·2=6;
  4. Делим НОК на число единиц валентности каждого элемента:
    • для Fe — 6:3=2;
    • для O — 6:2=3.
  5. Записываем полученные индексы справа внизу от элемента: Fe2O3.

Составление формулы солей

В солях «роль» гидроксогруппы OH играют кислотные остатки.

На первом месте в формуле средней соли стоит атом(ы) металла, кислотный остаток — на втором.

В качестве примера составим формулу соли фосфата натрия.

  1. Na PO4
  2. NaI PO4III
  3. НОК = 3·1 = 3
  4. для Na: 3:3=1; PO4: 3:1=3
  5. Na3PO4

Составьте формулы соединений, образованных химическими элементами с постоянной валентностью: калием и водородом; магнием и кислородом; алюминием и кислородом; кальцием и фтором; бором и кислородом, бором и водородом, барием и фтором. — знания.site

Составьте формулы соединений, образованных химическими элементами с постоянной

валентностью: калием и водородом; магнием и кислородом; алюминием и кислородом; кальцием

и фтором; бором и кислородом, бором и водородом, барием и фтором.

Таблица валентности химических элементов (1 часть):

Атомный номерХимический элементСимволВалентностьПримеры соединенийПримечание
1ВодородHIHCl, H2O2
2ГелийHeотсутствует
3ЛитийLiILiOH, Li2O
4БериллийBeI, II
5БорBIIIB2O3
6УглеродCII, IV
7АзотNI, II, III, IV
  • N2O;
  • NO;
  • N2O3, Ca(NO2)2,(NO)F, HNO2 NH2OH, NH3;
  • NO2, N2O4, HNO3, NH4NO3,  Ca(NO3)2, N2O5
В азотной кислоте (HNO3) и своем высшем оксиде (N2O5) атом азота образует только четыре ковалентные связи, являясь четырехвалентным
8КислородOII(NO)F, CaO, O2, H2O2,Cl2O, H2O
9ФторFIHF, (NO)F
10НеонNeотсутствует
11НатрийNaINa2S, Na2O
12МагнийMgIIMg(NO3)2
13АлюминийAlIIIAl2O3, Al2S3, AlCl3
14КремнийSiII, IV
15ФосфорPIII, V
  • P2O3, PH3,  H3PO3, H3PO4;
  • P2O5
16СераSII, IV, VI
  • H2S, K2S, PbS, Al2S3, Fe2S3, FeS2;
  • SO2;
  • SF6, SO3, H2SO4
17ХлорClI, III, IV, V, VI, VII
  • Cl2O, NaCl,  Cl2, HCl, NH4Cl;
  • NaClO2;
  • NaClO2;
  • KClO3, Cl2O5;
  • Cl2O6;
  • Cl2O7
18АргонArотсутствует
19КалийKIKOH, K2O, K2S
20КальцийCaIICa(OH)2
21СкандийScIIISc2O3
22ТитанTiII, III, IV
23ВанадийVII, III, IV, V
24ХромCrII, III, VI
25МарганецMnII, III, IV, VI, VII
  • Mn(OH)2;
  • Mn2O3;
  • MnO2;
  • MnO3;
  • Mn2O7
26ЖелезоFeII, III
  • Fe(OH)2, FeS2, FeO;
  • Fe2O3, Fe(OH)3, Fe2Cl3, Fe2S3
27КобальтCoII, III
28НикельNiII, III
29МедьCuI, II
30ЦинкZnIIZnSO4, ZnO, ZnS

Таблица валентности химических элементов (2 часть):

31ГаллийGaI, II, III
32ГерманийGeII, IV
33МышьякAsIII, V
34СеленSeII, IV, VI
35БромBrI, III, V, VII
36КриптонKrотсутствует
37РубидийRbIRbOH
38СтронцийSrIISrO
39ИттрийYIIIY(NO3)3
40ЦирконийZrII, III, IV
41НиобийNbI, II, III, IV, V
42МолибденMoII, III, IV, V, VI
  • MoCl2;
  • Mo(OH)3;
  • MoO2;
  • MoCl5;
  • MoF6
43ТехнецийTcII, III, IV, V, VI, VII
  • TcCl2;
  • TcBr3;
  • TcBr4;
  • TcF5;
  • TcCl6;
  • Tc2O7
44РутенийRuII, III, IV, V, VI, VII, VIII
  • Ru(OH)2;
  • RuCl3;
  • Ru(OH)4;
  • Ru2O5;
  • RuB2;
  • NaRuO4;
  • RuO4
45РодийRhII, III, IV, V, VI
  • RhO;
  • Rh2(SO4)3;
  • Rh(OH)4;
  • RhF5;
  • RhF6
46ПалладийPdII, IV
47СереброAgI, II, III
48КадмийCdI, II
49ИндийInI, II, III
50ОловоSnII, IV
51СурьмаSbIII, V
52ТеллурTeII, IV, VI
53ЙодII, III, V, VII
54КсенонXeотсутствует
55ЦезийCsICs2O
56БарийBaIIBa(OH)2
57ЛантанLaIIILa2(SO4)3
58ЦерийCeIII, IV
59ПразеодимPrII, III, IV
60НеодимNdII, III

Таблица валентности химических элементов (3 часть):

61ПрометийPmIIIPmBr3
62СамарийSmII, III
63ЕвропийEuII, III
64ГадолинийGdII, III
65ТербийTbII, III, IV
66ДиспрозийDyII, III
67ГольмийHoIIIHo2(SO4)3
68ЭрбийErIIIEr2O3
69ТулийTmII, III
70ИттербийYbII, III
71ЛютецийLuIIILuBr3
72ГафнийHfI, II, III, IV
73ТанталTaI, II, III, IV, V
  • Ta2O;
  • TaO;
  • TaCl3;
  • TaO2;
  • Ta2O5
74ВольфрамWII, III, IV, V, VI
  • W6Cl12;
  • WO3;
  • WO2;
  • W2Cl10;
  • WF6
75РенийReI, II, III, IV, V, VI, VII
  • Re2O;
  • ReO;
  • Re2O3;
  • ReO2;
  • ReF5;
  • ReCl6;
  • ReF7
76ОсмийOsI, II, III, IV, V, VI, VII, VIII
  • OsI;
  • OsI2;
  • OsBr3;
  • OsO2;
  • OsCl4;
  • OsF5;
  • OsF6;
  • OsOF5; 
  • OsO4
77ИридийIrI, II, III, IV, V, VI
  • IrCl;
  • IrCl2;
  • IrCl3;
  • IrO2;
  • Ir4F20;
  • IrF6
78ПлатинаPtII, III, IV, V, VI
79ЗолотоAuI, II, III, V
80РтутьHgI, II
81ТаллийTlI, II, III
82СвинецPbII, IV
83ВисмутBiIII, V
84ПолонийPoII, IV, VI
85АстатAtнет данных
86РадонRnотсутствует
87ФранцийFrIFrOH
88РадийRaIIRa(OH)2
89АктинийAcIIIAc2O3
90ТорийThII, III, IV
91ПротактинийPaII, III, IV, V
92УранUIII, IV, V, VI
93НептунийNpIII, IV, V, VI, VII
94ПлутонийPuIII, IV, V, VI, VII
95АмерицийAmII, III, IV, V, VI
96КюрийCmII, III, IV
97БерклийBkIII, IV
98КалифорнийCfII, III, IV
99ЭйнштейнийEsII, III
100ФермийFmII, III

Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента.

Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.

Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента.

Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K2O, CO, N2O3, SiO2, SO3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.

С точки зрения электронной теории валентность определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии.

Известны элементы, которые проявляют постоянную валентность. У большинства химических элементов валентность переменная.

Коэффициент востребованности 5 686

Таблица валентности химических элементов.

Порядковый номер химического элемента, он же: атомный номер, он же: зарядовое число атомного ядра, он же: атомное число

Русское / Английское наименование

Химический символ

Валентность

1

Водород / Hydrogen

H

(-1), 1

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

1

4

Бериллий / Beryllium

Be

2

5

Бор / Boron

B

-3, 3

6

Углерод / Carbon

C

( 2), 4

7

Азот / Nitrogen

N

-3, -2, -1, ( 1), 2, 3, 4, 5

8

Кислород / Oxygen

O

-2

9

Фтор / Fluorine

F

-1, ( 1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

1

12

Магний / Magnesium

Mg

2

13

Алюминий / Aluminum

Al

3

14

Кремний / Silicon

Si

-4, ( 2), 4

15

Фосфор / Phosphorus

P

-3, 1, 3, 5

16

Сера / Sulfur

S

-2, 2, 4, 6

17

Хлор / Chlorine

Cl

-1, 1, ( 2), 3, ( 4), 5, 7

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

1

20

Кальций / Calcium

Ca

2

21

Скандий / Scandium

Sc

3

22

Титан / Titanium

Ti

2, 3, 4

23

Ванадий / Vanadium

V

2, 3, 4, 5

24

Хром / Chromium

Cr

2, 3, 6

25

Марганец / Manganese

Mn

2, ( 3), 4, ( 6), 7

26

Железо / Iron

Fe

2, 3, ( 4), ( 6)

27

Кобальт / Cobalt

Co

2, 3, ( 4)

28

Никель / Nickel

Ni

( 1), 2, ( 3), ( 4)

29

Медь / Copper

Сu

1, 2, ( 3)

30

Цинк / Zinc

Zn

2

31

Галлий / Gallium

Ga

( 2). 3

32

Германий / Germanium

Ge

-4, 2, 4

33

Мышьяк / Arsenic

As

-3, ( 2), 3, 5

34

Селен / Selenium

Se

-2, ( 2), 4, 6

35

Бром / Bromine

Br

-1, 1, ( 3), ( 4), 5

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

1

38

Стронций / Strontium

Sr

2

39

Иттрий / Yttrium

Y

3

40

Цирконий / Zirconium

Zr

( 2), ( 3), 4

41

Ниобий / Niobium

Nb

( 2), 3, ( 4), 5

42

Молибден / Molybdenum

Mo

( 2), 3, ( 4), ( 5), 6

43

Технеций / Technetium

Tc

6

44

Рутений / Ruthenium

Ru

( 2), 3, 4, ( 6), ( 7), 8

45

Родий / Rhodium

Rh

( 2), ( 3), 4, ( 6)

46

Палладий / Palladium

Pd

2, 4, ( 6)

47

Серебро / Silver

Ag

1, ( 2), ( 3)

48

Кадмий / Cadmium

Cd

( 1), 2

49

Индий / Indium

In

( 1), ( 2), 3

50

Олово / Tin

Sn

2, 4

51

Сурьма / Antimony

Sb

-3, 3, ( 4), 5

52

Теллур / Tellurium

Te

-2, ( 2), 4, 6

53

Иод / Iodine

I

-1, 1, ( 3), ( 4), 5, 7

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

1

56

Барий / Barium

Ba

2

57

Лантан / Lanthanum

La

3

58

Церий / Cerium

Ce

3, 4

59

Празеодим / Praseodymium

Pr

3

60

Неодим / Neodymium

Nd

3, 4

61

Прометий / Promethium

Pm

3

62

Самарий / Samarium

Sm

( 2), 3

63

Европий / Europium

Eu

( 2), 3

64

Гадолиний / Gadolinium

Gd

3

65

Тербий / Terbium

Tb

3, 4

66

Диспрозий / Dysprosium

Dy

3

67

Гольмий / Holmium

Ho

3

68

Эрбий / Erbium

Er

3

69

Тулий / Thulium

Tm

( 2), 3

70

Иттербий / Ytterbium

Yb

( 2), 3

71

Лютеций / Lutetium

Lu

3

72

Гафний / Hafnium

Hf

4

73

Тантал / Tantalum

Ta

( 3), ( 4), 5

74

Вольфрам / Tungsten

W

( 2), ( 3), ( 4), ( 5), 6

75

Рений / Rhenium

Re

(-1), ( 1), 2, ( 3), 4, ( 5), 6, 7

76

Осмий / Osmium

Os

( 2), 3, 4, 6, 8

77

Иридий / Iridium

Ir

( 1), ( 2), 3, 4, 6

78

Платина / Platinum

Pt

( 1), 2, ( 3), 4, 6

79

Золото / Gold

Au

1, ( 2), 3

80

Ртуть / Mercury

Hg

1, 2

81

Талий / Thallium

Tl

1, ( 2), 3

82

Свинец / Lead

Pb

2, 4

83

Висмут / Bismuth

Bi

(-3), ( 2), 3, ( 4), ( 5)

84

Полоний / Polonium

Po

(-2), 2, 4, ( 6)

85

Астат / Astatine

At

нет данных

86

Радон / Radon

Rn

0

87

Франций / Francium

Fr

нет данных

88

Радий / Radium

Ra

2

89

Актиний / Actinium

Ac

3

90

Торий / Thorium

Th

4

91

Проактиний / Protactinium

Pa

5

92

Уран / Uranium

U

( 2), 3, 4, ( 5), 6

Чего не указано в таблице валентности, это то, что валентность элемента может быть постоянной и переменной.

Виды валентности

Постоянная (у металлов главных подгрупп)

Переменная (у неметаллов  и металлов побочных подгрупп)

Высшая (равна номеру группы)

Низшая (равна разности между числом 8 и номером группы)

Знание валентности элементов необходимы для правильного составления химических формул соединений.

Таблица характерных значений валентностей некоторых атомов химических соединений.

Элементы

Валентность

Примеры соединений

H, F, Li, Na, K

I

H2, HF, Li2O, NaCl, KBr

O, Mg, Ca, Sr, Ba, Zn

II

H2O, MgCl2, CaH2, SrBr2, BaO, ZnCl2

B, Al

III

BCl3, AlBr3

C, Si

IV

CO2, CH4, SiO2, SiCl4

Cu

I, II

Cu2O, CuO

Fe

II, III

FeCl2, FeCl3

Cr

II, III, VI

CrCl2, CrCl3, CrO3

S

II, IV, VI

H2S, SO2, SO3

N

III, IV

NH3, NH4Cl, HNO3

P

III, V

PH3, P2O5, H3PO4

Sn, Pb

II, IV

SnCl2, SnCl4, PbO, PbO2

Cl, Br, I

I, III, V, VII

HCl, ClF3, BrF5, IF7

Таблица элементов с постоянной валентностью.

Валентности

Элементы

I

H, Na, Li, K, Rb, Cs

II

O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd

III

B, Al, Ga, In

Фосфиды

Способы получения

Взаимодействие фосфора с металлами:

2P 3Mg → Mg3P2

2P 3Ca → Ca3P2

P 3Na → Na3P

Физические свойства, строение фосфидов

Фосфиды – представляют собой продукты взаимодействия
фосфора с металлами.

Фосфиды щелочных и щелочноземельных металлов имеют ионное строение.

Химические свойствафосфидов

Фосфиды крайне неустойчивы и легко подвергаются необратимому гидролизу с образованием РН3:

Ca3P2 6H2O → 3Са(ОН)2 2PH3↑

Mg3P2 6HCl → 3MgCl2 2PH3↑

Фосфин (ph3)

Способы полученияфосфина

Прямым синтезом PH3 получить нельзя.

  • Фосфин получают путем водного или кислотного гидролиза фосфидов:

Ca3P2 6H2O → 3Са(ОН)2 2PH3↑

Mg3P2 6HCl → 3MgCl2 2PH3↑

  • Реакция диспропорционирования фосфора в щелочах:

4P 3KOH 3H2O → 3KH2PO2 PH3↑

  • Разложение солей фосфония (Температура выше 80ºС):

P4I ↔ HI PH3↑

Физические свойствафосфина

При нормальной температуре фосфин является бесцветным газом с резким чесночным запахом. В воде малорастворим, хорошо растворим в органических растворителях

Фосфин — Яд!

Химические свойства фосфина

  • PH3не реагирует с водой, щелочами, аммиаком.

PH3— Проявляет свойства сильного восстановителя.

  • Вступает в реакции с кислотами –
    окислителями
    :

PH3 8H2SO4(конц) = H3PO4 8SO2↑ 3H2O

PH3 8HNO3(конц. гор) = H3PO4 8NO2↑ 4H2O

  • С безводными кислотами образует соли:

HI PH3↑ = P4I

  • Окисляется кислородом. При Т ~ 150ºС самовозгорается:

РН3 2О2 = P2O5 H2O (Н3РО4)

Практического значения фосфин не имеет.

Фосфористая кислота ( h3po3)

Способы полученияфосфористой кислоты

Р2О3 ЗН2О =2H3PO3

  • Гидролиз галогенидов фосфора (III):

PCl3  ЗН2О = H3PO3 3HCl

  • Окисление белого фосфора хлором:

2Р 3Cl2  6Н2О = 2H3PO3 6HCl

Физические свойства, строениефосфористой кислоты

Для молекулы фосфористой кислоты H3PO3 известны 2 таутомерные формы. В одной из них 2 атома водорода молекулы связаны с кислородом, а один атом водорода связан непосредственно с атомом фосфора. Такой атом водорода не может быть замещен атомами металлов, поэтому кислота является двухосновной.

В другой
таутомерной форме – все три атома водорода связаны с кислородом.

Формула фосфористой кислоты выглядит следующим образом: Н2[НРО3]

При комнатной
температуре H3PO3 –
кристаллическое вещество без цвета, хорошо растворимое в воде, Тпл =  74°С.

Валентность фосфора
в фосфористой кислота равна V, а степень окисления  3.

Химические свойствафосфористой кислоты

Является
слабой кислотой.

  • Для нее характерны все свойства кислот — взаимодействие с металлами с выделением Н2; с оксидами металлов и с щелочами. При этом образуются одно — или двухзамещенные фосфиты:

Н2[НРО3] NaOH = NaH[HРО3] Н2О

Н2[НРО3] 2NaOH = Na2[HРО3] 2Н2О

  • Кислота является и окислителем и восстановителем, при нагревании вступая в реакции диспропорционирования:

H2HPO3 H2HPO3 = H3PO4 PH3

Кислота и ее соли являются сильными восстановителями:

  • Реагируют с сильными окислителями:

H3PO3 Cl2 Н2О = H3PO4 2HCl

5H3PO3 2KMnO4 3H2SO4 → 5H3PO4 K2SO4 2MnSO4 3H2O

H3PO3 HgCl2 H2O → H3PO4 Hg 2HCl

  • Реагируют с более слабыми окислителями:

H3PO3 2AgNO3 Н2О = H3PO4 2Ag↓ 2HNO3

  • В реакции с сильными восстановителями, например, с щелочными и щелочно-земельными металлами, цинковой пылью, кислота восстанавливается до фосфина:

H2HPO3 3Zn 3H2SO4 = 3ZnSO4 PH3 3Н2О

  • При нагревании водного раствора Н3РO3окисляется до H3PO4 с выделением водорода:

H3PO3 Н2О = H3PO4 Н2

Фосфорные кислоты

Фосфор
образует только 2 устойчивых оксида, в которых он находится в степенях
окисления 5 и 3. Однако существует большое число кислот, в которых фосфор
имеет валентность равную V (пять ковалентных связей) и степени окисления 5,
4, 3, 1.

Строение
наиболее известных кислот выражается следующими формулами:

Наибольшее
практическое значение имеют ортофосфорная (фосфорная) и ортофосфористая
(фосфористая) кислоты.

Фосфорные удобрения

Фосфаты и гидрофосфаты кальция и аммония используются в качестве фосфорных удобрений.

При достаточном количестве фосфора растения быстро растут и хорошо плодоносят. Внесение фосфорных удобрений благоприятствует росту корневой системы растения и повышению урожайности. В связи с этим такие удобрения важны при выращивании овощных, зерновых и плодово-ягодных культур.

В таблице ниже приведены основные виды фосфорных удобрений.

Оцените статью
Кислород
Добавить комментарий