Nh3 o2 = no h2o расставить коэффициенты
Реакция протекает по схеме:
NH3 O2 = NO H2O.
В ходе реакции степень окисления азота повышается от (-3) до ( 2) (азот окисляется), а кислорода – понижается от 0 до (-2) (кислород восстанавливается).
Уравнение полуреакции окисления азота:
Уравнение полуреакции восстановления кислорода:
Поскольку отношение чисел электронов, принятых при восстановлении кислорода и отданных при окислении азота, равно 2:5, то, складывая уравнения полуреакций восстановления и окисления, надо первое из них умножить на 2, а второе – на 5:
В молекулярной форме полученное уравнение имеет следующий вид:
Оксид (окись) азота (II) представляет собой бесцветный трудно сжижаемый газ. В воде он мало растворим: 1 объем воды при растворяет всего 0,07 объема
растворяет всего 0,07 объема
.
По химическим свойствам монооксид азота относится к безразличным оксидам, так как не образует никакой кислоты.
В лаборатории оксид азота (II) обычно получают взаимодействием 30 – 35%-ной азотной кислоты с медью:
В промышленности он является промежуточным продуктом при производстве азотной кислоты.
Для монооксида азота характерна окислительно-восстановительная двойственность. Под действием сильных окислителей он окисляется, а в присутствии сильных восстановителей – восстанавливается.
Аммиак бархатова — отчет о лабораторной работе каталитическое окисление аммиака вариант
Подборка по базе: Манерова.Общие подходы к работе с текстом..docx, титульны лист для отчета по информ.doc, Форма отчета по практике.docx, пример отчета.pdf, Исмагилов Б.М. Отчет.pdf, Лаб 3 Садртдинов Тимур Отчет.docx, Итоговый тест по КПК _Реализация требований обновленных ФГОС НОО, Краткий отчет дневник самокотроля.docx, БЖД ЛР-14 Форма отчета.doc, 2022-05 Отчет об учебной практике Афанасьева Диана.docx
Кафедра общей химической технологии
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ
Каталитическое окисление аммиака
Вариант 1.
Выполнила | __________________ | Бархатова М.Д. ХЕБО-13-17 |
Проверил | __________________ | д.х.н., профессор Брук Л.Г. |
Москва 2020
В настоящее время практически единственным промышленным способом получения азотной кислоты является контактное окисление аммиака кислородом воздуха в оксид азота (II) (1) с последующим окислением последнего в оксид азота(IV) (2) и поглощением полученных оксидов водой (3):
4NH3 5O2 = 4NO 6H2O (1)
2NO O2 = 2NO (2)
4NO2 2H2O O2 = 4HNO3 (3)
Окисление аммиака кислородом воздуха до оксида азота (II) является первой стадией процесса получения азотной кислоты (1). Наряду с основной реакцией окисления аммиака до оксида азота (II) происходит окисление аммиака до молекулярного азота и оксида азота(I):
4NH3 3O2 = 2N2 6H2O (4)
4NH3 4O2 = 2N2O 6H2O (5)
При определенных условиях возможна диссоциация аммиака (6), а также последовательные реакции, приводящие к образованию молекулярного азота (7 и 8):
2NH3 = N2 3H2 (6)
2NO = N2 O2 (7)
4NH3 6NO = 5N2 6H2O (8)
Таким образом, окисление аммиака − процесс сложный.
Константы равновесия реакций (1, 4, 5) весьма велики (значительно больше 102) и, следовательно, все эти реакции практически необратимы. Реакция диссоциации аммиака (6) в интервале температур от −6 до 500°С обратима, при температурах выше 500°С она почти нацело смещена в сторону продуктов разложения аммиака.
Некаталитическое окисление аммиака в газовой фазе при высоких температурах протекает не с образованием оксида азота (II) (1), а с образованием молекулярного азота (4). Для эффективной реализации реакции (1) необходим селективный катализатор, активно адсорбирующий кислород. В промышленности чаще всего применяют платино-родиевые сплавы (кроме платины до 10% родия, палладия, рутения, осмия и др.) в виде сеток. Окисление аммиака на этом катализаторе протекает очень быстро, при времени контактирования порядка 10-4 с, а выход NO составляет примерно 98% на аммиак. Неплатиновые катализаторы, состоящие из оксидов железа и хрома, дают выход оксида азота (II) около 96%, но скорость реакции примерно в 100 раз меньше, чем на платиновых сетках. В промышленности часто используют комбинированный катализ с окислением вначале на платиновых сетках, а потом — на оксидном катализаторе.
Окисление аммиака на платиновом катализаторе протекает в несколько стадий:
1) диффузия реагирующих веществ из газового объема к поверхности катализатора;
2) активированная адсорбция кислорода на активных центрах катализатора с образованием поверхностного комплекса (катализатор-кислород), из которого затем образуется новый комплекс (катализатор — кислород — аммиак);
3) стадии превращения последнего комплекса с образованием оксида азота (II) и воды;
4) десорбция продуктов реакции с поверхности катализатора (NO и H2O обладают небольшой адсорбционной способностью при температурах процесса и легко удаляются с поверхности);
5) диффузия продуктов реакции в газовый объем.
Наблюдаемая скорость каталитического окисления аммиака будет определяться скоростью диффузии того реагента, который находится в недостатке.
Механизм процесса окисления аммиака на поверхности катализатора схематично представлен на рис.1.
Рис.1. Схема окисления аммиака кислородом на поверхности платинового катализатора: 1 – старые связи, 2 – вновь образовавшиеся связи,
3 – место разрыва связей
Степень занятости активных центров катализатора кислородом в значительной степени зависит от температуры и концентрации кислорода в поступающей газовой смеси. Связывание кислорода с поверхностью катализатора в зависимости от температуры может происходить как за счет физической адсорбции, так и за счет хемосорбционных процессов. Физическая адсорбция и хемосорбция − процессы экзотермические, а значит, равновесное содержание сорбированного на катализаторе кислорода уменьшается с повышением температуры (рис.2). Физическая адсорбция даже при низких температурах протекает достаточно быстро и поэтому до значения t1 кривая представляет собой равновесную кривую физической адсорбции газа. При t1 одновременно с физической адсорбцией начинает протекать с небольшой скоростью и хемосорбция. С повышением температуры скорость хемосорбции возрастает, и при температуре t2 количество адсорбированного газа приближается к равновесному.
При дальнейшем повышении температуры происходит разрыв связей между адсорбированным газом и активными центрами катализатора, что приводит к резкому снижению количества адсорбированного вещества. Это снижение обусловлено тем, что наряду с возрастанием константы скорости сорбции с повышением температуры начинает сказываться смещение равновесия в сторону десорбции. Скорость десорбции растет быстрее, чем скорость сорбции вследствие меньшей энергии активации последней. Таким образом, практическая кривая адсорбции имеет минимум и максимум.
Рис.2. Зависимость количества адсорбированного кислорода от
температуры: 1 – равновесная кривая физической адсорбции,
2 и 3 – равновесная и практическая кривые хемосорбции
Выбор оптимальных условий для сложного необратимого каталитического процесса сводится к созданию такого технологического режима, который обеспечивал бы высокую скорость основной реакции.
Температура. На платиновом катализаторе с изменением температуры практический выход оксида азота (II) изменяется по кривой с максимумом (рис.3). Такой характер кривой определяется влиянием температуры на возможность протекания побочных реакций и на их скорость.
При низких температурах, примерно до 500°С, когда количество адсорбированного кислорода сравнительно невелико, окисление аммиака протекает в основном с образованием молекулярного азота (2.1.4), некоторого количества оксида азота (II) и, возможно, оксида азота(I).
Рис.3. Зависимость практического выхода оксида азота (II) от температуры при разных давлениях: 1 – 0,1 МПа, 2 – 0,8 Мпа
С повышением температуры до 700-800°С выход NOвозрастает, так как увеличивается доля активных центров катализатора, занятых кислородом (кривая 3, рис.2) и растет скорость диффузии исходных веществ к поверхности катализатора. При дальнейшем повышении температуры происходит повышение скорости десорбции кислорода, и резко возрастают скорости побочных каталитических реакций и реакций, протекающих в объеме. В результате снижается выход оксида азота (II) и возрастает выход молекулярного азота. При выборе температуры окисления аммиака необходимо учитывать другой фактор, влияющий на экономические показатели процесса — потери дорогостоящей платины, которые возрастают с повышением температуры.
Необходимый температурный режим в реакторе может быть обеспечен теплом, выделяющимся при реакциях окисления аммиака, т.е. окисление аммиака проводят в автотермическом режиме.
Состав исходной смеси. Для обеспечения высокого выхода оксида азота (II) необходимо проводить процесс при избытке кислорода (рис.4). При стехиометрическом отношении кислорода к аммиаку (см. реакцию (1)), равном 1,25, часть активных центров катализатора не заполняется кислородом, что способствует реакциям разложения аммиака, окисления его до N2и, возможно, до N2O. В промышленности при использовании платино-родиевых сеток объемное отношение поддерживается в пределах 1,7 − 1,9.
Рис.4. Зависимость практического выхода оксида азота (II) от объемного отношения кислорода к аммиаку
Повышение отношения кислорода к аммиаку свыше двух не сказывается на выходе оксида азота (II), но приводит к снижению концентрации оксида азота (II) в нитрозных газах за счет введения воздуха, что ухудшает работу абсорбционного отделения, где происходит поглощение нитрозных газов водой с образованием азотной кислоты. При использовании неплатиновых катализаторов отношение кислорода к аммиаку должно быть более двух.
Давление. Процесс окисления аммиака является стадией производства азотной кислоты, включающего еще стадии окисления оксида азота (II) в оксид азота (IV) (9) и абсорбцию последнего водой (10). Проведение всех стадий под небольшим давлением имеет ряд преимуществ: повышается скорость и производительность последующих стадий в производстве азотной кислоты: реакции окисления оксида азота (II) в оксид азота (IV) и абсорбции нитрозных газов водой, уменьшается объём аппаратов.
2NO O2 = 2NO2 (9)
2NO2 H2O 0,5 O2 = 2HNO3(10)
Повышение давления имеет большое значение для работы агрегатов большой единичной мощности. Однако с повышением давления уменьшается скорость внешней диффузии аммиака к поверхности катализатора, которая является лимитирующей, и затрудняется процесс десорбции продуктов каталитического окисления с поверхности катализатора в объём. Для компенсации этого необходимо повышать температуру процесса. Чем выше давление, тем более высокая температура требуется для достижения одного и того же выхода оксида азота (II) (рис.3).
С повышением температуры увеличиваются потери платины. Потери платины из-за летучести образующихся на ее поверхности оксидов и ее эрозии составляют при 900 – 950 ̊С и 0,8 МПа 250 − 400 мг на 1 т 100% HNO3. Часть платины осаждается на стенках коммуникаций и может быть собрана и регенерирована (до 50 — 70%). Потери платины могут быть уменьшены за счет добавок других металлов 8-ой группы (Pd, Rh, Ru).
Время контактирования. Реакция окисления аммиака происходит во внешнедиффузионной области, и поэтому увеличение объемной скорости и уменьшение времени контактирования оказывает положительное влияние на интенсивность процесса (рис.5).
Рис.5. Зависимость практического выхода оксида азота (II) от времени контактирования
Схема лабораторной установки
Схема представлена на рис 6. Газообразный аммиак из баллона 1 через ротаметр 2 поступает в смеситель 3. Ротаметр 2 не калиброван и является лишь индикаторным прибором, регистрирующим заданный расход аммиака (h мм). Расход аммиака регулируется вентилем А. Воздух подается с помощью воздуходувки 4, очищается от масла в фильтре 5, заполненном стеклянной ватой, затем поступает в смеситель 3. Расход воздуха измеряют с помощью калиброванного ротаметра 6 и регулируют вентилем Б. Аммиачно-воздушная смесь поступает в верхнюю часть контактного аппарата 7 и проходит через комбинированный катализатор (четыре платиновых сетки и слой оксидного катализатора). Полученные нитрозные газы по нижней трубке направляют на нейтрализацию.
Рис.6. Схема лабораторной установки для окисления аммиака: 1 – баллон; 2,6 – ротаметры; 3 – смеситель; 4 – воздуходувка; 5 – фильтр; 7 -контактный аппарат: 8 – катализаторная корзина; 9 – термопара; 10 – спираль; 11 – смотровое окно; 12 – колба для отбора пробы газа
Контактный аппарат состоит из трех частей: верхнего стального конуса, футерованного алюминием; средней цилиндрической части и нижнего конуса, изготовленного из хромоникелевой стали. С целью снижения потерь тепла аппарат снаружи покрыт теплоизоляцией. Между фланцами верхнего конуса и цилиндрической частью зажат фланец катализаторной корзины 8 для таблеток неплатинового катализатора. Над корзиной укреплены платиновые сетки. Для измерения температуры в зоне катализатора в качестве датчика используют термопару 9. В верхний конус контактного аппарата вмонтирована платиновая спираль 10, которая разогревается электрическим током от сети через ЛАТР: сила тока контролируется амперметром. Аппарат имеет смотровое стекло 11 для наблюдения за разогреванием катализатора. Трубка с краном В служит для отбора аммиачно-воздушной смеси, поступающей в контактный аппарат, трубка с краном Г − для отбора нитрозных газов. Трубка с краном Д необходима для слива слабой азотной кислоты, образующейся при частичной конденсации влажных нитрозных газов.
Порядок выполнения работы
Подготовка колб для отбора газовых проб
1. Круглодонные колбы с пришлифованными пробками должны быть вымыты. Горловины колб и шлифы очищают от остатков смазки фильтровальной бумагой, наносят на шлиф пробки и горловину вакуумную смазку и тщательно притирают (шлифы после смазки и притирания должны быть совершенно прозрачными).
2. В колбу, предназначенную для анализа аммиачно-воздушной смеси, наливают из бюретки 25 мл 0,1 н раствора серной кислоты и 3 капли индикатора метилового красного. В другую колбу, предназначенную для анализа нитрозных газов, наливают 25 мл 0,1 н раствора гидроксида натрия и добавляют 3 капли того же индикатора. Затем пробки на колбах вновь притирают.
3. Колбы помещают поочередно в защитное устройство из металлической сетки и откачивают воздух вакуумным насосом до момента закипания жидкости. После этого поворачивают пробку так, чтобы отверстие в ней не совпадало с отверстием в горлышке колбы.
4. Взвешивают колбы на электронных весах.
Техника проведения эксперимента
1. Включают воздуходувку 4 и устанавливают вентилем Б заданный расход воздуха.
2. Осторожно поворачивая вентиль А, устанавливают заданный расход аммиака. Во избежание получения взрывчатой смеси содержание аммиака в аммиачно-воздушной смеси не должно превышать 11% объем. (не более 45 дел. (!)).
3. Для начала реакции необходимо разогреть катализатор, для чего включают платиновую спираль 10.
4. При достижении в контактном аппарате температуры 300°С выключают ток, проходящий через спираль. В дальнейшем температура в контактном аппарате будет поддерживаться за счет тепла, выделяющегося при реакции.
После установления постоянной температуры в контактном аппарате (600оС) отбирают пробы аммиачно-воздушной смеси и смеси нитрозных газов. Эта операция выполняется двумя студентами следующим образом:
1. Проводят отдувку нитрозных газов, для чего открывают кран Г и в течение нескольких секунд выпускают газ в выхлопную линию.
2. Присоединяют подготовленную колбу с кислотой к газоотборной трубке с краном В, а со щелочью к газоотборной трубке с краном Г.
3. Открывают краны В и Г.
4. Осторожно поворачивают пробки так, чтобы отверстия на них близко подошли к отросткам на горловинах колб.
5. Одновременно по счету «раз» дополнительным поворотом пробок обеспечивают поступление газа в колбы.
6. Через 3 — 4 с поворачивают пробки в первоначальное положение, прекращая, таким образом, доступ газа в колбы, перекрывают краны В и Г, и отсоединяют колбы.
7. Прекращают подачу аммиака, затем после полного охлаждения контактного аппарата выключают воздуходувку.
8. Определяют концентрации аммиака в аммиачно-воздушной смеси и оксида азота (II) в нитрозных газах. Если нужно провести опыт при других условиях, то изменяют расход воздуха или аммиака и вновь отбирают пробы газовых смесей на анализ после установления постоянной температуры в реакторе.
Исходные данные
Вариант 1.
Расход воздуха при условиях лаборатории – 40 л/мин
Температура в контактном аппарате – 750оС.
Данные о катализаторах:
-платиновый:
число сеток – 1,
рабочая площадь сетки – 40 см2,
число ячеек – 1024 на см2,
диаметр нити 0,09 мм.
-неплатиновый:
объем катализатора – 90 мл,
доля свободного объема – 0,6.
Концентрация аммиака в аммиачно-воздушной смеси – 5,6% масс.
Концентрация оксида азота (II) в нитрозных газах – 9,2% масс.
Температура в лаборатории – 18оС,
барометрическое давление – 750 мм.рт.ст.
Расчётная часть
Выход оксида азота (II) по аммиаку, который в предположении 100 % степени превращения аммиака совпадает с селективностью:
Содержание аммиака и воздуха в аммиачно-воздушной смеси в объемных процентах:
Объёмный расход аммиака:
Расходы аммиака и воздуха, приведённые к нормальным условиям:
Массовые количества введенных веществ:
Количество полученного оксида азота (II):
4NH3 5O2 = 4NO 6H2O (1)
Количество оставшегося в газовой смеси кислорода:
4NH3 5O2 = 4NO 6H2O (1)
4NH3 3O2 = 2N2 6H2O (4)
Количество образовавшегося азота по реакции (4):
Количество реакционной воды:
Таблица 1. Материальный баланс контактного аппарата для окисления аммиака
ПРИХОД | РАСХОД | ||||||
Наименование | л, н.у. | г | %масс | Наименование | л, н.у. | г | %масс |
Аммиак | 3,75 | 2,85 | 5,64 | Оксид азота (II) | 3,50 | 4,68 | 9,26 |
Воздух | 37,03 | Азот по реакции | 0,13 | 0,16 | 0,32 | ||
В том числе: Кислород | Азот из воздуха | 29,25 | 36,57 | 72,37 | |||
7,78 | 11,11 | 21,99 | Кислород | 3,215 | 4,59 | 9,08 | |
Азот | 29,25 | 36,57 | 72,37 | Вода | 4,53 | 8,97 | |
Невязка | 0 | 0 | |||||
Всего: | 40,78 | 50,53 | 100,00 | Всего | 50,53 | 100,00 |
Базис – 1 кг NO, коэффициент пересчета = 1000/4,68=213,675
Таблица 2. Материальный баланс контактного аппарата для окисления аммиака (по базису)
ПРИХОД | РАСХОД | ||||||||||
Наименование | л, н.у. | г | %масс | Наименование | л, н.у. | г | %масс | ||||
Аммиак | 801,28 | 608,97 | 5,64 | Оксид азота (II) | 747,86 | 1000,00 | 9,26 | ||||
Воздух | 7912,38 | Азот по реакции | 27,78 | 34,18 | 0,32 | ||||||
В том числе: Кислород | Азот из воздуха | 6249,99 | 7814,10 | 72,37 | |||||||
1662,39 | 2373,93 | 21,99 | Кислород | 686,97 | 980,77 | 9,08 | |||||
Азот | 6249,99 | 7814,10 | 72,37 | Вода | 967,95 | 8,97 | |||||
Невязка | 0 | 0 | |||||||||
Всего: | 8713,66 | 10797,00 | 100,00 | Всего | 10797,00 | 100,00 |
Время контактирования:
Для платинового катализатора
Для неплатинового катализатора:
Объёмное отношение O2 к NH3:
Интенсивность работы катализатора:
Для платиногового катализатора:
Для неплатинового катализатора:
Практический выход оксида азота (II):
4NH3 5O2 = 4NO 6H2O (1)
Нитраты
С металлами (Al, Zn, Mg) в щелочной среде нитраты восстанавливаются до аммиака:
Сначала выделяется атомарный водород, который и восстанавливает нитрат до аммиака.
3NaNO3 8Al 5NaOH 18H2O → 3NH3NH3
При сплавлении в щелочной среде нитраты восстанавливаются до нитритов:
3NaNO3 Cr2O3 4KOH → 3NaNO2 2K2CrO4 2H2O
3NaNO3 Cr2O3 2Na2CO3 → 3NaNO2 2Na2CrO4 2CO2
KNO3 MnO2 2KOH → KNO2 K2MnO4 H2O
KNO3 MnO2 K2CO3 → KNO2 K2MnO4 CO2
2NaNO3 FeSO4 4NaOH → 2NaNO2 Na2FeO4 Na2SO4 2H2O
3NaNO3 Fe2O3 NaOH → 3NaNO2 2Na2FeO4 2H2O
3KNO3 Fe 2KOH → 3KNO2 K2FeO4 H2O
Неметаллами нитраты восстанавливаются до нитритов:
2KNO3 C → 2KNO2 CO2NO2 SO2
В кислотной среде нитраты также являются сильными окислителями:
Cu 2KNO3 2H2SO4 → CuSO4 2NO2NO
С солями аммония, по сути, идет разложение нитрата аммония:
KNO3 NH4Cl → N2O
В случае нитрата слабого металла именно метал будет окислителем, а не азот:
8AgNO3 PH3 4H2O → Ag H3PO4 HNO3
Термическое разложение нитратов:
MNO3 → MNO2 O2
M – металл, находящийся в ряду напряжений металлов левее Mg, исключая Li.
MNO3 → MO NO2
M – металл, находящийся в ряду напряжений металлов от Mg до Cu (Mg и Cu включительно), а также Li.
MNO3 → M NO2
M – металл, находящийся в ряду напряжений металлов правее Cu.
Если металл, входящий в состав соли, может быть окислен (выделяющимися газами), то при разложении образуется оксид с более высокой степенью окисления металла:
4Fe(NO3)2 → 2Fe2O3 8NO2
Оксиды азота
Оксид азота (IV) диспропорционирует в реакциях с водой и растворами щелочей и карбонатов щелочных металлов:
Т.к. оксиду NO2 соответствуют две кислоты, при взаимодействии с щелочью или карбонатами щелочных металлов образуются две соли: нитрат и нитрит соответствующего металла:
2NO2 2NaOH → NaNO2 NaNO3 H2O
2NO2 Na2CO3 → NaNO3 NaNO2 CO2
4NO2 2Ba(OH)2 → Ba(NO2)2 Ba(NO3)2 2H2O
3NO2 H2O → 2HNO3 NO
В аналогичных реакциях с кислородом образуются только соединения с N 5 :
4NO2 O2 4NaOH → 4NaNO3 2H2O
4NO2 O2 2H2O → 4HNO3 (растворение в избытке кислорода)
Сильными окислителями NO, как правило, окисляется до N 5 :
2NO 3KClO 2KOH → 2KNO3 3KCl H2O
8NO 3HClO4 4H2O → 8HNO3 3HCl
14NO 6HBrO4 4H2O → 14HNO3 3Br2
Но есть и исключения:
2NO O2 → 2NO2(идет самопроизвольно на воздухе)
NO в роли окислителя:
2NO 2SO2 → N2N2
В реакциях с типичными восстановителями NO2, как правило, восстанавливается до NO или N2:
2NO2 P2O3 4KOH → 2NONO
NO
NO
N2
2CO2
N2
N2
Как и у всех оксидов азота, у N2O преобладают окислительные свойства, что делает возможным окисление металлов:
N2O Cu → CuO N2N2
Способы получения азота
1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды.
NaNO2 NH4Cl → NH4NO2 NaCl
NH4NO2 → N2 2H2O
Суммарное уравнение процесса:
NaNO2 NH4Cl → N2 NaCl 2H2O
Видеоопытвзаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.
Азот также образуется при горении аммиака:
4NH3 3O2 → 2N2 6H2O
2. Наиболее чистый азот получают разложением азидовщелочныхметаллов.
Например, разложением азида натрия:
2NaN3 → 2Na 3N2
3.Еще один лабораторный способ получения азота — восстановление оксида меди (II) аммиаком при температуре ~700 °C:
3CuO 2NH3 → 3Cu N2 3H2O
В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.
Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.
Адсорбционные методы разделения воздуха на компоненты основаны на разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.
Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.
В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.
Химические свойства
Азотная кислота – это сильная кислота. За счет азота со степенью окисления 5 азотная кислота проявляет сильные окислительные свойства.
1. Азотная кислота практически полностью диссоциируетв водном растворе.
HNO3 → H NO3–
2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например, азотная кислота взаимодействует с оксидом меди (II):
CuO 2HNO3 → Cu(NO3)2 H2O
Еще пример: азотная кислота реагирует с гидроксидом натрия:
HNO3 NaOH → NaNO3 H2O
3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).
Например, азотная кислота взаимодействует с карбонатом натрия:
2HNO3 Na2CO3 → 2NaNO3 H2O CO2
4. Азотная кислота частично разлагается при кипении или под действием света:
4HNO3 → 4NO2 O2 2H2O
5.Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот 5.
металл HNO3 → нитрат металла вода газ (или соль аммония)
С алюминием, хромом и железомна холодуконцентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления 4:
Fe 6HNO3(конц.) → Fe(NO3)3 3NO2 3H2O
Al 6HNO3(конц.) → Al(NO3)3 3NO2 3H2O
Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):
HNO3 3HCl Au → AuCl3 NO 2H2O
Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:
4HNO3(конц.) Cu → Cu(NO3)2 2NO2 2H2O
С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):
10HNO3 4Ca → 4Ca(NO3)2 2N2O 5H2O
Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).
8HNO3 (разб.) 3Cu → 3Cu(NO3)2 2NO 4H2O
С активными металлами (щелочными и щелочноземельными), а также оловоми железом разбавленная азотная кислота реагирует с образованием молекулярного азота:
12HNO3(разб) 10Na → 10NaNO3 N2 6H2O
При взаимодействии кальцияи магнияс азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):
10HNO3 4Ca → 4Ca(NO3)2 2N2O 5H2O
Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
10HNO3 4Zn → 4Zn(NO3)2 NH4NO3 3H2O
Таблица. Взаимодействие азотной кислоты с металлами.
Азотная кислота | ||||
Концентрированная | Разбавленная | |||
с Fe, Al, Cr | с неактивными металлами и металлами средней активности (после Al) | с щелочными и щелочноземельными металлами | с неактивными металлами и металлами средней активности (после Al) | с металлами до Al в ряду активности, Sn, Fe |
пассивация при низкой Т | образуется NO2 | образуется N2O | образуется NO | образуется N2 |
6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).
Например, азотная кислота окисляет серу, фосфор, углерод, йод:
6HNO3 S → H2SO4 6NO2 2H2O
Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.
5HNO3 P → H3PO4 5NO2 H2O
5HNO3 3P 2H2O → 3H3PO4 5NO
Видеоопытвзаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.
4HNO3 C → CO2 4NO2 2H2O
Видеоопытвзаимодействия угля с безводной азотной кислотой можно посмотреть здесь.
10HNO3 I2 → 2HIO3 10NO2 4H2O
7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др.
Например, азотная кислота окисляет оксид серы (IV):
2HNO3 SO2 → H2SO4 2NO2
Еще пример: азотная кислота окисляет йодоводород:
6HNO3 HI → HIO3 6NO2 3H2O
Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.
3С 4HNO3 → 3СО2 4NO 2H2O
Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.
Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:
2HNO3 H2S → S 2NO2 2H2O
При нагревании до серной кислоты:
2HNO3 H2S → H2SO4 2NO2 2H2O
8HNO3 CuS → CuSO4 8NO2 4H2O
Соединения железа (II) азотная кислота окисляет до соединений железа (III):
4HNO3 FeS → Fe(NO3)3 NO S 2H2O
8. Азотная кислота окрашивает белкив оранжево-желтый цвет («ксантопротеиновая реакция»).
Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.
Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.
Химические свойства азота
При нормальных условиях азот химически малоактивен.
1. Азот проявляет свойства окислителя(с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами.
1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000оС), на электрической дуге (в природе – во время грозы):
N2 O2 ⇄ 2NO – Q
Процесс эндотермический, т.е. протекает с поглощением теплоты.
1.2. При сильном нагревании (3000оС-5000оС или действие электрического разряда) образуется атомарный азот, который реагирует с серой, фосфором, мышьяком, углеродом с образованием бинарных соединений:
2С N2 → N≡C–C≡N
Молекулярный азот, таким образом, не реагирует с серой, фосфором, мышьяком, углеродом.
1.3.Азот взаимодействует с водородом при высоком давлении и высокой температуре, в присутствии катализатора. При этом образуется аммиак:
N2 ЗН2 ⇄ 2NH3
Этот процесс экзотермический, т.е. протекает с выделением теплоты.
1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.
Например, литий реагирует с азотом с образованием нитрида лития:
N2 6Li → 2Li3N
2.Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.
Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.
Например, азот окисляет гидрид лития:
N2 3LiH → Li3N NH3
Химические свойства аммиака
1.В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:
:NH3 H2O ⇄ NH4 OH–
Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.
Видеоопытрастворения аммиака в воде можно посмотреть здесь.
2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.
Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):
NH3 H2SO4 → NH4HSO4
2NH3 H2SO4 → (NH4)2SO4
Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:
NH3 H2O CO2 → NH4HCO3
2NH3 H2O CO2 → (NH4)2CO3
Видеоопытвзаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.
В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.
NH3 HCl → NH4Cl
Видеоопытвзаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.
3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.
Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):
FeSO4 2NH3 2H2O → Fe(OH)2 (NH4)2SO4
4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.
Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):
4NH3 CuCl2 → [Cu(NH3)4]Cl2
Гидроксид меди (II) растворяется в избытке аммиака:
4NH3 Cu(OH)2 → [Cu(NH3)4](OH)2
5.Аммиак горит на воздухе, образуя азот и воду:
4NH3 3O2 → 2N2 6H2O
Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:
4NH3 5O2 → 4NO 6H2O
6. За счет атомов водорода в степени окисления 1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.
Например, жидкий аммиак реагирует с натрием с образованием амида натрия:
2NH3 2Na → 2NaNH2 H2
Также возможно образование Na2NH, Na3N.
При взаимодействии аммиака с алюминием образуется нитрид алюминия:
2NH3 2Al → 2AlN 3H2
7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.
Например, аммиак окисляется хлором до молекулярного азота:
2NH3 3Cl2 → N2 6HCl
Пероксид водорода также окисляет аммиак до азота:
2NH3 3H2O2 → N2 6H2O
Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.
Например, оксид меди (II) окисляет аммиак:
2NH3 3CuO → 3Cu N2 3H2O
Химические свойства солей аммония
1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:
NH4Cl ⇄ NH4 Cl–
2.Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.
Например, карбонат аммония реагирует с соляной кислотой. При этом выделяется углекислый газ:
(NH4)2CO3 2НCl → 2NH4Cl Н2O CO2
Соли аммония реагируют с щелочами с образованием аммиака.
Например, хлорид аммония реагирует с гидроксидом калия:
NH4Cl KOH → KCl NH3 H2O
Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.
3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:
NH4Cl Н2O ↔ NH3 ∙ H2O HCl
NH4 HOH ↔ NH3 ∙ H2O H
4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:
NH4Cl → NH3 HCl
NH4HCO3 → NH3 CO2 H2O
(NH4)2SO4 → NH4HSO4 NH3
NH4HS → NH3 H2S
Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:
NH4NO2 → N2 2H2O
190 – 245° C:
NH4NO3 → N2O 2H2O
При температуре 250 – 300°C:
2NH4NO3 → 2NO 4H2O
При температуре выше 300°C:
2NH4NO3 → 2N2 O2 4H2O
Разложение бихромата аммония («вулканчик»).Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):
(NH4)2Cr2O7 → Cr2O3 N2 4H2O
Окислитель – хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду.
Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив.
Видеоопытразложения дихромата аммония можно посмотреть здесь.