Строение атома кислорода (O), схема и примеры

Строение атома кислорода (O), схема и примеры Кислород
Содержание
  1. Атом и молекула кислорода. формула кислорода. строение кислорода:
  2. Биологическая роль кислорода
  3. В медицине
  4. В металлургии
  5. В пищевой промышленности
  6. Воздействие на здоровье
  7. Все тесты
  8. Горение
  9. Изотопы кислорода
  10. История открытия
  11. Кислород — идеальный окислитель
  12. Кислород — простое вещество
  13. Кислород — самый распространенный элемент
  14. Кислород, свойства атома, химические и физические свойства.
  15. Кислород-13
  16. Кислород-15
  17. Кислород-18
  18. Получение
  19. Получение кислорода в лаборатории
  20. Получение кислорода в промышленных масштабах
  21. Применение кислорода
  22. Применение кислорода:
  23. Примеры решения задач
  24. Происхождение названия
  25. Ракетное топливо
  26. Роль молекул о2 в природе и жизни человека
  27. Сварка и резка металлов
  28. Свойства кислорода — химического элемента
  29. Соединения кислорода
  30. Строение атома кислорода
  31. Токсические производные кислорода
  32. Физические свойства
  33. Халькогены — родственные кислороду элементы
  34. Химические расчеты по формуле и уравнениям реакций с участием молекул о2
  35. Химические свойства
  36. Электронное строение кислорода
  37. Элемент в окружающей среде

Атом и молекула кислорода. формула кислорода. строение кислорода:

Кислород – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением О и атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.

Кислород самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы халькогенов.

Кислород – химически активный неметалл.

Кислород обозначается символом О.

Как простое вещество кислород (химическая формула O2) при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха. В жидком состоянии кислород имеет светло-голубой цвет, а в твёрдом – представляет собой кристаллы светло-синего цвета.

Молекула кислорода двухатомна. Также встречается аллотропная модификация кислорода – озон, молекула которого состоит из трёх атомов кислорода.

Химическая формула кислорода O2 (или O3 – озон).

Электронная конфигурация атома кислорода 1s2 2s2 2p4. Потенциал ионизации (первый электрон) атома кислорода равен 1313,94 кДж/моль (13,618055(7) эВ).

Строение атома кислорода. Атом кислорода (наиболее распространенный из трех изотопов кислорода (99,757 %) – 168О) состоит из положительно заряженного ядра ( 8), вокруг которого по атомным оболочкам движутся восемь электронов.

При этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поскольку кислород расположен во втором периоде, оболочки всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s- и р-орбиталями.

Два спаренных электрона находится на 1s-орбитали, вторая пара электронов – на 2s-орбитали. На 2р-орбитали находится два спаренных и два неспаренных электрона. Поэтому во всех своих соединениях кислород проявляет валентность II. В свою очередь ядро атома кислорода состоит из восьми протонов и восьми нейтронов. Кислород относится к элементам p-семейства.

Радиус атома кислорода (вычисленный) составляет 48 пм.

Атомная масса атома кислорода составляет 15,99903-15,99977 а. е. м.

Кислород – самый распространённый химический элемент на Земле. В земной коре на его долю в составе различных соединений приходится около 46 % массы. Морские и пресные воды содержат по массе 86 % кислорода (если быть точнее – 85,82 %). В человеке его содержание составляет по массе 61 %.

При высокой температуре молекула кислорода О2 обратимо диссоциирует на атомарный кислород. При 2000 °C на атомарный кислород диссоциирует 0,03 % молекулярного кислорода, при 2600 °C – 1 %, при 4000 °C – 59 %, при 6000 °C — 99,5 %.

Биологическая роль кислорода

Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях.

В медицине

Кислород используется для обогащения дыхательных газовых смесей при нарушении дыхания, для лечения астмы, в виде кислородных коктейлей, кислородных подушек и т. д.

В металлургии


Конвертерный способ производства стали связан с применением кислорода.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

Воздействие на здоровье

Кислород необходим для всех форм жизни, так как он является составной частью ДНК и почти всех других биологически важных соединений. В лёгких этот элемент поглощается атомом железа в центре гемоглобина в крови и, таким образом, транспортируется туда, где он необходим.

Каждый человек нуждается в этом элементе, чтобы дышать, но, как и во многих случаях, слишком большое его количество вредно. Если человек подвергается воздействию большого количества О2 в течение длительного времени, может произойти повреждение лёгких.

Вдыхание 50−100% кислорода при нормальном давлении в течение длительного периода приводит к повреждению лёгких. Люди, которые работают с частым или потенциально высоким воздействием чистого элемента, должны пройти тесты на функционирование лёгких до начала работы и по завершении.

Все тесты

  • Тест на темуАнализ стихотворения «Не с теми я, кто бросил землю» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Перемена» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Стихи о Петербурге» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Стихи к Блоку» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «Клеветникам России» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Завещание» Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «Стихи о Москве» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «Молитва» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «И. И. Пущину!» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «День и ночь» Ф. Тютчева5 вопросов
  • Тест на темуАнализ стихотворения «Весна в лесу» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Журавли» Р. Гамзатова5 вопросов
  • Тест на темуАнализ стихотворения «Люблю» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения «Когда на меня навалилась беда» К. Кулиева5 вопросов
  • Тест на темуАнализ стихотворения «Гамлет» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Русь» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Ночь» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения К. Симонова «Ты помнишь, Алёша, дороги Смоленщины…»5 вопросов
  • Тест на темуАнализ стихотворения Жуковского «Приход весны»5 вопросов
  • Тест на темуАнализ стихотворения Анны Ахматовой «Сероглазый король»5 вопросов
  • Тест на темуАнализ стихотворения «Июль – макушка лета…»5 вопросов
  • Тест на темуАнализ стихотворения «Мелколесье. Степь и дали…» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Не позволяй душе лениться» Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «На дне моей жизни» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Нивы сжаты, рощи голы…» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Бабушкины сказки» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Снежок» Н. Некрасова1 вопрос
  • Тест на темуАнализ стихотворения «По вечерам» Н. Рубцова5 вопросов
  • Тест на темуАнализ стихотворения «Вчерашний день, часу в шестом…» Н. Некрасова5 вопросов
  • Тест на темуАнализ стихотворения «Цветы последние милей…» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Я знаю, никакой моей вины…» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Я не ищу гармонии в природе»Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «Разбуди меня завтра рано» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Снега потемнеют синие» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Осень» Н. Карамзина5 вопросов
  • Тест на темуАнализ стихотворения «Молитва» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Вечер» А. Фета5 вопросов
  • Тест на темуАнализ стихотворения «Не жалею, не зову, не плачу» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Тучи» М. Лермонтова5 вопросов
  • Тест на темуАнализ стихотворения «Книга» Г. Тукая5 вопросов
  • Тест на темуАнализ стихотворения «Необычайное приключение, бывшее с Владимиром Маяковским летом на даче» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения «Деревня» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Летний вечер» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Я убит подо Ржевом» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Элегия» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Зимнее утро» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Троица» И. Бунина5 вопросов
  • Тест на темуАнализ стихотворения «Бабушке» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «О весна без конца и краю» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Море» В. Жуковского5 вопросов

Горение

Если в лаборатории проводится сжигание веществ в кислороде, то нужно знать и соблюдать противопожарные правила. Водород мгновенно сгорает в воздухе, а смешанный с кислородом в соотношении 2:1, он взрывоопасен. Горение веществ в чистом кислороде происходит намного интенсивнее, чем в воздухе.

Объясняется это явление составом воздуха. Кислород в атмосфере составляет чуть больше 1/5 части (21%). Горение — это реакция веществ с кислородом, в результате которой образуются разные продукты, в основном оксиды металлов и неметаллов. Пожароопасны смеси О2 с горючими веществами, кроме того, получившиеся соединения могут быть токсичными.

Горение обычной свечки (или спички) сопровождается образованием диоксида углерода. Следующий опыт можно провести в домашних условиях. Если сжигать вещество под стеклянной банкой или большим стаканом, то горение прекратится, как только израсходуется весь кислород.

Азот не поддерживает дыхание и горение. Углекислый газ — продукт окисления — больше не вступает в реакцию с кислородом. Прозрачная известковая вода позволяет обнаружить присутствие диоксида углерода после горения свечи. Если пропускать продукты горения через гидроксид кальция, то раствор мутнеет. Происходит химическая реакция между известковой водой и углекислым газом, получается нерастворимый карбонат кальция.

Про кислород:  Техническая документация - БАЛЛОН-ТОРГ

Изотопы кислорода

Есть три естественных изотопа О2: кислород-16, кислород-17 и кислород-18. Изотопы — это две или более формы элемента. Они отличаются друг от друга по их массовому числу. Число, написанное справа от названия элемента, является массовым числом.

Известно также пять радиоактивных изотопов элемента. Радиоактивный изотоп — это тот, который распадается на части и испускает некоторую форму радиации. Радиоактивные изотопы образуются, когда очень маленькие частицы обжигают атомы. Эти частицы прилипают к атомам и делают их радиоактивными.

История открытия

Что такое воздух? Древние народы глубоко задумывались над этим вопросом. И это не удивительно, когда понимаешь, насколько важен воздух для многих процессов. Объекты не могут гореть без воздуха. Человек не может выжить без воздуха. На самом деле, древние народы думали, что воздух должен быть «элементом».

Но они использовали слово «элемент» в несколько ином значении, нежели современные учёные. Для древних людей элемент был чем-то очень важным и основным. Воздух соответствует этому описанию, наряду с огнём, водой и землёй. Впоследствии многие учёные повлияли на открытие такого элемента, как кислород:

  • Первым человеком в Западной Европе, который описал «части» воздуха, был итальянский художник и учёный Леонардо да Винчи (1452−1519). Леонардо отметил, что воздух не полностью расходуется, когда в нем что-то сжигается. Поэтому он сказал, что воздух должен состоять из двух частей: одной части, которая расходуется на горение, и одной части, которая не участвует в процессе. В течение многих лет идеи Леонардо были не очень популярны среди учёных. Проблема заключалась в том, что у первых химиков не было хорошего оборудования, как в современных лабораториях. Им было сложно собрать образцы воздуха, а затем изучить его.
  • В начале 1700-х химики начали узнавать больше о воздухе, но несколько окольным путём. Например, в 1771 и 1772 годах Карл Вильельм Шееле изучал влияние тепла на ряд соединений. В одном эксперименте он использовал карбонат серебра (Ag 2 CO 3), карбонат ртути (HgCO 3) и нитрат магния (Mg (NO 3) 2). Когда он нагревал эти соединения, он обнаружил, что выделялся газ. Затем он изучил свойства этого газа и обнаружил, что пламя ярко горело в нём. Он также заметил, что животные в нём могут безболезненно находиться. Не зная этого, Шееле открыл кислород.
  • Примерно через два года Джозеф Пристли провёл аналогичные эксперименты, нагревая оксид ртути (HgO) в пламени. Соединение распалось, в результате чего образовались жидкая металлическая ртуть и газ. Когда Пристли проверил новый газ, он обнаружил те же свойства и характеристики, что и Шееле. Пристли даже пытался вдохнуть тот газ, получение которого ему удалось осуществить.
  • Антуана-Лорана Лавуазье (1743−94) часто называют отцом современной химии. Он получил это звание по ряду причин. Наиболее важной из них является объяснение, которое он открыл для процесса сгорания (горения). До исследования Лавуазье химики считали, что горящий объект выделяет вещество в воздух. Они назвали это вещество флогистоном. Например, когда горело дерево, химики говорили, что флогистон перешёл из дерева в воздух. Лавуазье показал, что эта идея неверна. Когда что-то горит, это на самом деле происходит реакция с кислородом в воздухе. Горение, сказал Лавуазье, — это просто окисление (процесс, при котором какое-либо вещество соединяется с О2). Это открытие дало химикам совершенно новый взгляд на химические изменения. Теория флогистона постепенно начала вымирать. Начали развитие многие идеи, которые сегодня используются в современной химии.

Некоторые люди думают, что Шееле следует отдать должное за открытие кислорода. Он завершил свои эксперименты раньше, чем Пристли. Но его издатель очень медленно печатал отчёты учёного. Они действительно вышли после отчётов Пристли. Таким образом, большинство историков сходится во мнении, что Шееле и Пристли должны разделить между собой право на открытие кислорода.

Ни Шееле, ни Пристли до конца не понимали важность их открытия. Этот шаг был предпринят французским химиком Антуаном-Лораном Лавуазье (1743−94). Лавуазье был первым человеком, который объявил, что новый газ является элементом. Он был также первым человеком, который объяснил, как кислород участвует в горении. Кроме того, он предложил название для газа.

Слово oxygenium («кислород») происходит от греческих слов, обозначающих «рождающий кислоту». Лавуазье выбрал такое название, потому что думал, что все кислоты содержат О2. Поэтому новый элемент отвечал за «образование кислот». Однако в этом отношении Лавуазье ошибся. Не все кислоты содержат кислород.

Кислород — идеальный окислитель

Известны соединения кислорода со всеми химическими элементами таблицы Менделеева, кроме первых представителей семейства благородных газов. Многие вещества непосредственно вступают в реакции с атомами О, исключая галогены, золото и платину. Большое значение имеют явления с участием кислорода, которые сопровождаются выделением света и тепла.

Такие процессы широко используются в быту, промышленности. В металлургии взаимодействие руд с кислородом называют обжигом. Предварительно измельченную руду смешивают с воздухом, обогащенным кислородом. При высоких температурах происходит восстановление металлов из сульфидов до простых веществ.

Появление дешевого способа получения кислорода из воздуха методом разделения на компоненты при низкой температуре стимулировало развитие многих направлений промышленного производства. Химики считают молекулы О2 и атомы О идеальными окислительными агентами.

Это естественные материалы, они постоянно возобновляются в природе, не загрязняют окружающую среду. Кроме того, химические реакции с участием кислорода чаще всего завершаются синтезом еще одного натурального и безопасного продукта — воды. Велика роль О2 в обезвреживании токсичных производственных отходов, очистке воды от загрязнений.

Кроме кислорода, для обеззараживания используется его аллотропная модификация — озон. Это простое вещество обладает высокой окислительной активностью. При озонировании воды разлагаются загрязняющие вещества. Озон также губительно действует на болезнетворную микрофлору.

Кислород — простое вещество

Английский исследователь Д. Пристли в 1774 году в ходе опытов выделил газ при разложении оксида ртути. Двумя годами ранее это же вещество в чистом виде получил К. Шееле. Лишь спустя несколько лет французский химик А. Лавуазье установил, что за газ входит в состав воздуха, изучил свойства.

Химическая формула кислорода — О2. Отразим в записи состава вещества электроны, участвующие в образовании неполярной ковалентной связи — О::О. Заменим каждую связывающую электронную пару одной чертой: О=О. Такая формула кислорода наглядно показывает, что атомы в молекуле связаны между двумя общими парами электронов.

Выполним несложные расчеты и определим, чему равна относительная молекулярная масса кислорода: Mr(O2) = Ar(O) х 2 = 16 х 2 = 32. Для сравнения: Mr(возд.) = 29. Химическая формула кислорода отличается от формулы озона на один атом кислорода. Значит, Mr(O3) = Ar(O) х 3 = 48. Озон в 1,5 раза тяжелее кислорода.

Кислород — самый распространенный элемент

Общее содержание атомов элемента в земной коре составляет примерно 47 % (по весу). Кислород встречается как в свободном виде, так и в составе многочисленных соединений. Простое вещество, формула которого О2, находится в составе атмосферы, составляя 21 % воздуха (по объему). Молекулярный кислород растворен в воде, находится между частичками почвы.

Мы уже знаем, что есть другая разновидность существования того же самого химического элемента в форме простого вещества. Это озон — газ, образующий на высоте около 30 км от поверхности земли слой, часто называемый озоновым экраном. Связанный кислород входит в молекулы воды, в состав многих горных пород и минералов, органических соединений.

Кислород, свойства атома, химические и физические свойства.

О 8  Кислород

15,99903-15,99977*     1s2 2s2 2p4

Кислород — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.

Атом и молекула кислорода. Формула кислорода. Строение кислорода

Изотопы и модификации кислорода

Свойства кислорода (таблица): температура, плотность, давление и пр.

Физические свойства кислорода

Химические свойства кислорода. Взаимодействие кислорода. Реакции с кислородом

Получение кислорода

Применение кислорода

Таблица химических элементов Д.И. Менделеева

Кислород-13

Кислород-13 — нестабильный изотоп кислорода, ядро которого состоит из 8 протонов и 5 нейтронов. Спин ядра 3/2, период полураспада 8,58 мс. Атомная масса 13,0248 а. е. м. Он превращается в 13N путём электронного захвата с выделением энергии распада 17,765 МэВ[11].

Кислород-15

Изотоп 15O используется в позитронно-эмиссионной томографии, но гораздо реже, чем 18F или 11С. Это объясняется слишком коротким периодом полураспада 15O. Ядро 15O состоит из 8 протонов, 7 нейтронов, атомная масса 15.0030654 а. е. м. Период полураспада — 122 секунды[13].

Кислород-18

Используется при синтезе 18F методом бомбардировки протонами мишеней с 18O в ускорителях. Для этого природный кислород обогащают по 18O до 95%. Разделение изотопов производится методом дистилляции и/или центрифугированием[5][6].

Получение

В настоящее время в промышленности кислород получают из воздуха. В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей.

Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной и азотной технологий.

2KMnO4 → K2MnO4  MnO2  O2↑


В лабораторных условиях получают также каталитическим разложением пероксида водорода Н2О2:

2Н2О2 → 2Н2О  О2↑

Катализатором является диоксид марганца (MnO2) или кусочек сырых овощей (в них содержатся ферменты, ускоряющие разложение пероксида водорода).


Кислород можно также получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

Про кислород:  Аппараты для жидкого кислорода

2KClO3 → 2KCl  3O2↑

Катализатором также выступает MnO2.

Получение кислорода в лаборатории

При нагревании кислородосодержащих веществ, например перманганата калия, выделяется бесцветный газ, который можно собрать в колбу или пробирку. Если внести в чистый кислород зажженную лучину, то она горит более ярко, чем в воздухе. Два других лабораторных способа получения кислорода — разложение пероксида водорода и хлората калия (бертолетовой соли). Рассмотрим схему прибора, который применяется для термического разложения.

В пробирку или круглодонную колбу надо насыпать немного бертолетовой соли, закрыть пробкой с газоотводной трубочкой. Ее противоположный конец следует направить (под водой) в опрокинутую вверх дном колбу. Горлышко должно быть опущено в широкий стакан или кристаллизатор, наполненный водой.

При нагревании пробирки с бертолетовой солью выделяется кислород. По газоотводной трубке он поступает в колбу, вытесняя из нее воду. Когда колба наполнится газом, ее закрывают под водой пробкой и переворачивают. Полученный в этом лабораторном опыте кислород можно использовать для изучения химических свойств простого вещества.

Получение кислорода в промышленных масштабах

Самый дешевый процесс, в результате которого получаются свободные от воздуха молекулы О2, не связан с проведением химических реакций. В промышленности, скажем, на металлургических комбинатах, воздух при низкой температуре и высоком давлении сжижают.

Такие важнейшие компоненты атмосферы, как азот и кислород, кипят при разных температурах. Разделяют воздушную смесь при постепенном нагревании до обычной температуры. Сначала выделяются молекулы азота, затем кислорода. Способ разделения основан на разных физических свойствах простых веществ. Формула простого вещества кислорода такая же, как была до охлаждения и сжижения воздуха, — О2.

В результате некоторых реакций электролиза тоже выделяется кислород, его собирают над соответствующим электродом. Газ нужен промышленным, строительным предприятиям в больших объемах. Потребности в кислороде постоянно растут, особенно нуждается в нем химическая промышленность.

Применение кислорода

Молекулярный диоксид O2 необходим для клеточного дыхания у всех аэробных организмов. Его реакционноспособные виды, такие как супероксид-ион (O2-) и пероксид водорода (H2O2), являются опасными побочными продуктами использования кислорода в организмах.

Однако части иммунной системы высших организмов используют реактивный пероксид, супероксид и синглетный кислород для уничтожения вторгающихся микробов. Реактивные виды также играют важную роль в гиперчувствительной реакции растений на воздействие патогенных микроорганизмов.

В состоянии покоя взрослый человек вдыхает от 1,8 до 2,4 г кислорода в минуту. Это составляет более 6 миллиардов тонн элемента, вдыхаемого человечеством в год. Сферы использования включают в себя следующие:

  • Люди, у которых есть проблемы с дыханием, используют кислородные маски и резервуары, чтобы получить необходимый им кислород.
  • Он используется в ракетном топливе, сочетается с водородом в двигателе. Когда водород и кислород объединяются, они выделяют очень большое количество энергии. Энергия используется для запуска ракеты в космос.
  • На производство металла приходится самый большой процент использования О2. Например, элемент используется для сжигания углерода и других примесей, которые содержатся в железе для производства стали. Небольшое количество этих примесей может быть полезным для стали, но слишком большое делает его ломким и непригодным для использования. Углерод и другие примеси сжигаются при производстве стали путём продувки О2 через расплавленное железо.
  • Используется при производстве таких металлов, как медь, свинец и цинк. Эти металлы встречаются в земле в форме сульфидов, таких как сульфид меди (CuS), сульфид свинца (PbS) и сульфид цинка (ZnS). Первым шагом в извлечении этих металлов является превращение их в оксиды. Затем оксиды нагревают с углеродом, чтобы получить чистые металлы.
  • Применяется в химической промышленности в качестве исходного материала для производства некоторых очень важных соединений. Иногда этапы перехода от кислорода к конечному соединению являются длительными. Например, газообразный этилен (C2H4) может быть обработан кислородом с образованием этиленоксида (CH2CH2O). Около 60% полученного этиленоксида превращается в этиленгликоль (CH2CH2 (OH)2). Этиленгликоль используется в качестве антифриза и служит отправной точкой при производстве полиэфирных волокон, плёнки, пластиковых контейнеров, пакетов и упаковочных материалов
  • Используется в оксиацетиленовой сварке, в качестве окислителя для ракетного топлива, а также в производстве метанола и этиленоксида.
  • Растения и животные используют его для дыхания.
  • Чистый кислород часто используется для облегчения дыхания у пациентов с респираторными заболеваниями.

Кислород и его соединения играют ключевую роль во многих важных процессах жизни и промышленности

Применение кислорода:

Таблица химических элементов Д.И. Менделеева

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Таблица химических элементов Д.И. Менделеева

Примеры решения задач

ПРИМЕР 1
ЗаданиеОпределите относительную атомную массу бора, если известно, что массовая доля изотопа 10B равна 19,6%, а 11В – 80,4%.
РешениеИзотопы – это атомы одного и того же химического элемента, имеющие разные массовые числа (одинаковое число протонов, но разное – нейтронов). Средняя относительная масса изотопов рассчитывается по формуле:

Ar = (Ar1 × ω1 Ar2 × ω2)/100.

Рассчитываем среднюю относительную атомную массу бора:

Ar(B) = (10 × 19,6 11 × 80,4)/100 = 10,8 а.е.м.

ОтветAr(B) = 10,8 а.е.м.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (l’oxygène), предложенного А.

Лавуазье (греческое όξύγενναω от ὀξύς — «кислый» и γενναω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим окислы, именуемые по современной международной номенклатуре оксидами.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

Роль молекул о2 в природе и жизни человека

Кислород потребляется живыми организмами на Земле и участвует в круговороте веществ свыше 3 млрд лет. Это главное вещество для дыхания и метаболизма, с его помощью происходит разложение молекул питательных веществ, синтезируется необходимая для организмов энергия.

Велика роль кислорода в природе и хозяйстве:

  • поглощается в процессе дыхания живыми организмами;
  • участвует в реакциях фотосинтеза в растениях;
  • входит в состав органических молекул;
  • процессы гниения, брожения, ржавления протекают при участии кислорода, выступающего в качестве окислителя;
  • используется для получения ценных продуктов органического синтеза.

Сжиженный кислород в баллонах используют для резки и сварки металлов при высоких температурах. Эти процессы проводят на машиностроительных заводах, на транспортных и строительных предприятиях. Для проведения работ под водой, под землей, на большой высоте в безвоздушном пространстве люди тоже нуждаются в молекулах О2.

Сварка и резка металлов


Кислород в баллонах широко используется для газопламенной резки и сварки металлов.

Свойства кислорода — химического элемента

На 2р-подуровне атома имеются два неспаренных электрона, что объясняет появление степеней окисления –2 и 2. Два спаренных электрона не могут разъединиться, чтобы степень окисления возросла до 4, как у серы и других халькогенов. Причина — отсутствие свободного подуровня.

Только в соединениях с фтором кислород проявляет нехарактерную для него положительную степень окисления 2. Значение ЭО двух сильных неметаллов отличается: ЭО (О) = 3,5; ЭО (F) = 4. Как более электроотрицательный химический элемент, фтор сильнее удерживает свои электроны и притягивает валентные частицы на внешнем энергетическом уровне атома кислорода. Поэтому в реакции с фтором кислород является восстановителем, отдает электроны.

Соединения кислорода

Основные степени окисления кислород 2, 1, 0, -1 и -2.

Соединения кислорода:

Степень окисленияТипичные соединения
2Фторид кислорода OF2
1Пероксофторид кислорода O2F2
-1Пероксид водорода H2O2

Пероксид натрия Na2Oи др.

-2Вода H2O

Оксиды металлов и неметаллов Na2O, SO2 и др.

Кислородсодержащие кислоты

Соли кислородсодержащих кислот

Кислородсодержащие органические вещества

Основания и амфотерные гидроксиды

Про кислород:  Сипак аппарат для дыхания

Строение атома кислорода

Периодическая таблица Менделеева содержит полную информацию о кислороде:

  1. Порядковый номер элемента — 8.
  2. Заряд ядра — 8.
  3. Общее число электронов — 8.
  4. Электронная формула кислорода — 1s22s22p4.

В природе встречаются три стабильных изотопа, которые имеют одинаковый порядковый номер в таблице Менделеева, идентичный состав протонов и электронов, но разное число нейтронов. Обозначаются изотопы одним и тем же символом — О. Для сравнения приведем схему, отражающую состав трех изотопов кислорода:

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода.

Физические свойства

При нормальных условиях кислород это газ без цвета, вкуса и запаха. 1л его весит 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком.


При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (темп. кипения −182,98 °C) это бледно-голубая жидкость.

Твердый кислород (темп. плавления −218,79 °C) — синие кристаллы. Известны шесть кристаллических фаз, из которых три существуют при давлении в 1 атм.:

α-О2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53° .β-О2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.

Ещё три фазы образуются при высоких давлениях:δ-О2 интервал температур до 300 К и давление 6-10 ГПа, оранжевые кристаллы;ε-О2 давление от 10 и до 96 ГПа, цвет кристаллов от темно красного до чёрного, моноклинная сингония;

Халькогены — родственные кислороду элементы

Сходные по свойствам атомы образуют одну группу в периодической системе. Кислород возглавляет семейство халькогенов, но отличается от них по ряду свойств.

Атомная масса кислорода — родоначальника группы — составляет 16 а. е. м. Халькогены при образовании соединений с водородом и металлами проявляют свою обычную степень окисления: –2. Например, в составе воды (Н2О) окислительное число кислорода равно –2.

Состав типичных водородных соединений халькогенов отвечает общей формуле: Н2R. При растворении этих веществ образуются кислоты. Только водородное соединение кислорода — вода — обладает особыми свойствами. Согласно выводам ученых, это необычное вещество является и очень слабой кислотой, и очень слабым основанием.

Сера, селен и теллур имеют типичные положительные степени окисления ( 4, 6) в соединениях с кислородом и другими неметаллами, обладающими высокой электроотрицательностью (ЭО). Состав оксидов халькогенов отражают общие формулы: RO2, RO3. Соответствующие им кислоты имеют состав: H2RO3, H2RO4.

Элементам соответствуют простые вещества: кислород, сера, селен, теллур и полоний. Первые три представителя проявляют неметаллические свойства. Формула кислорода — О2. Аллотропное видоизменение того же элемента — озон (О3). Обе модификации являются газами. Сера и селен — твердые неметаллы. Теллур — металлоидное вещество, проводник электрического тока, полоний — металл.

Химические расчеты по формуле и уравнениям реакций с участием молекул о2

Численное значение молярной массы кислорода совпадает с другой величиной — относительной молекулярной массой. Только в первом случае присутствуют единицы измерения. Коротко формула вещества кислорода и его молярной массы должна быть записана так: М(О2) = 32 г/моль.

При нормальных условиях молю любого газа соответствует объем 22,4 л. Значит, 1 моль О2 — это 22,4 л вещества, 2 моль О2 — 44,8 л. По уравнению реакции между кислородом и водородом можно заметить, что взаимодействуют 2 моля водорода и 1 моль кислорода:

Если в реакции участвует 1 моль водорода, то объем кислорода составит 0,5 моль • 22,4 л/моль = 11,2 л.

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

O2   2F2  →  2OF2

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

S O2 → SO2

  Si O2 → SiO2

1.3.Фосфоргорит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

4P      3O2  →   2P2O3

Но чаще фосфор сгорает до оксида фосфора (V):

4P      5O2  →   2P2O5

1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

    N2  O2→  2NO

1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

2Ca       O2 → 2CaO

Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

    2Na O2→  Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

    K O2→  KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn O2→  2ZnO

Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe O2→  2FeO

4Fe 3O2→  2Fe2O3

3Fe 2O2→  Fe3O4

1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

C     O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C     O2  →  2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

4FeS 7O2→  2Fe2O3 4SO2

Al4C3 6O2→  2Al2O3 3CO2

Ca3P2 4O2→  3CaO P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

2H2S 3O2→  2H2O 2SO2

Аммиакгорит с образованием простого вещества, азота:

4NH3 3O2→  2N2 6H2O

Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 5O2→  4NO 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

CS2 3O2→  CO2 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

2CO O2→  2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например, кислород окисляет гидроксид железа (II):

4Fe(OH)2 O2 2H2O → 4Fe(OH)3

Кислород окисляет азотистую кислоту:

2HNO2 O2 → 2HNO3

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 2O2→  CO2 2H2O

2CH4 3O2→  2CO 4H2O

CH4 O2→  C  2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

2CH2=CH2 O2 → 2CH3-CH=O

Электронное строение кислорода

Электронная конфигурация  кислорода в основном состоянии:

😯 1s22s22p4     1s Строение атома кислорода (O), схема и примеры  2s Строение атома кислорода (O), схема и примеры  2s Строение атома кислорода (O), схема и примеры 2p Строение атома кислорода (O), схема и примеры

Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.

Элемент в окружающей среде

Земная кора состоит в основном из кремниево-кислородных минералов, и многие другие элементы присутствуют в виде их оксидов. Газообразный кислород составляет пятую часть атмосферы. О2 в атмосфере Земли образуется в результате фотосинтеза растений, он накапливался в течение длительного времени, поскольку они использовали обильные запасы углекислого газа в ранней атмосфере и выделяли кислород.

Элемент хорошо растворяется в воде, что делает возможной жизнь в реках, озёрах и океанах. Вода в этих водоёмах должна регулярно снабжаться кислородом, поскольку, когда запасы О2 в ней истощаются, она больше не может поддерживать рыбу и другие водные организмы.

Почти все химические вещества, кроме инертных газов, связываются с кислородом с образованием соединений. Вода, H2O и кремнезём, SiO2, основной компонент песка, являются одними из наиболее распространённых двойных кислородных соединений. Среди соединений, которые содержат более двух элементов, наиболее распространёнными являются силикаты, которые образуют большинство пород и почв.

Элемент встречается во всех видах минералов. Некоторые общие примеры включают оксиды, карбонаты, нитраты, сульфаты и фосфаты. Оксиды — это химические соединения, которые содержат кислород и ещё один элемент. Карбонаты — это соединения, которые содержат кислород, углерод и ещё один элемент.

Нитраты, сульфаты и фосфаты также содержат кислород. Другими элементами в этих соединениях являются азот, сера или фосфор плюс ещё один элемент. Примерами этих соединений являются нитрат калия или селитра (KNO3), сульфат магния или соли Эпсома (MgSO4) и фосфат кальция (Ca3 (PO 4)2).

Оцените статью
Кислород
Добавить комментарий