Таблица степени окисления химических элементов

Таблица степени окисления химических элементов Кислород
Содержание
  1. Классификация оксидов по кислотно-основным свойствам
  2. Биологическая роль кислорода
  3. В медицине
  4. Валентные возможности атома азота
  5. Валентные возможности атома водорода
  6. Валентные возможности атома серы
  7. Валентные возможности атома углерода
  8. Валентные возможности фосфора
  9. Изотопы
  10. История открытия
  11. Кислород – мощный окислитель, без которого невозможно существование
  12. Кислород – особенности строения молекулы
  13. Нахождение в природе
  14. Применение кислорода и его соединений в промышленности
  15. Происхождение названия
  16. Разложение кислородсодержащих веществ
  17. Реакция перекисных соединений с углекислым газом
  18. Степень окисления кислорода:
  19. Таблица степеней окисления химических элементов. максимальная и минимальная степень окисления. возможные степени окисления химических элементов. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
  20. Таблица степени окисления химических элементов
  21. Токсические производные кислорода
  22. Физические свойства
  23. Фториды кислорода
  24. Химические свойства
  25. Электроотрицательность

Классификация оксидов по кислотно-основным свойствам

Существует четыре вида оксидов:

  • основные;
  • кислотные;
  • нейтральные;
  • амфотерные.

Степени окисления кислорода в соединениях данных видов равны -2.

  • Основные оксиды – это соединения с металлами, обладающими низкими степенями окисления. Обычно при взаимодействии с кислотами получаются соответствующие соль и вода.
  • Кислотные оксиды – оксиды неметаллов с высокой степенью окисления. При добавлении к ним воды образуется кислота.
  • Нейтральные оксиды – соединения, которые не входят в реакцию ни с кислотами, ни с основаниями.
  • Амфотерные оксиды – соединения с металлами, обладающими малым значением электроотрицательности. Они, в зависимости от обстоятельств, проявляют свойства и кислотных, и основных оксидов.

Биологическая роль кислорода

Большинство живых существ (аэробы) дышат кислородом. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях.

В медицине

Основная статья: Кислородная терапия

Медицинский кислород хранится в металлических газовых баллонах высокого давления голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Крупные медицинские учреждения могут использовать не сжатый кислород в баллонах, а сжиженный в сосуде Дьюара большой ёмкости. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.Таблица степени окисления химических элементов

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии.

Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованнаяπ-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

em>Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления 5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4 , азотная кислота и д.р).

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон.

Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Изотопы

Основная статья: Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16O, 17O и 18O, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16O связано с тем, что ядро атома 16O состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12O до 28O. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15O с периодом полураспада ~120 секунд. Наиболее краткоживущий изотоп 12O имеет период полураспада 5,8⋅10−22 секунд.

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Кислород – мощный окислитель, без которого невозможно существование

Выше много было написано о том, какие кислород проявляет степени окисления при вступлении в реакцию с различными соединениями и элементами, какие виды соединений кислорода существуют, какие виды опасны для жизни, а какие нет. Одно может остаться непонятным – как при всей своей токсичности и высоком уровне окисления кислород является одним из элементов, без которых невозможна жизнь на Земле?

Дело в том, что наша планета является очень сбалансированным организмом, который приспособился именно к тем веществам, которые содержатся в атмосферном слое. Она участвует в круговороте, который выглядит следующим образом: человек и все остальные животные потребляют кислород и вырабатывают углекислый газ, а растения в подавляющем большинстве потребляют углекислый газ и вырабатывают кислород.

Кислород – особенности строения молекулы

Данный химический элемент являет собой бесцветный газ, не имеющий запаха и вкуса. Химическая формула – О2. Химики называют обычный двухатомный кислород либо «атмосферный кислород», либо «дикислород».

Молекула вещества состоит из двух связанных атомов кислорода. Существует также молекулы, состоящие из трех атомов – О

3

. Данное вещество называется озон, более подробно о нем будет написано ниже. Молекула с двумя атомами имеет степень окисления кислорода -2, так как в ней есть два неспаренных способных образовывать ковалентную связь электрона. Энергия, которая выделяется при разложении (диссоциации) молекулы кислорода на атомы, равна 493,57 кДж/моль. Это довольно большое значение.

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Применение кислорода и его соединений в промышленности

Благодаря тому, что в свое время ученые узнали, какая степень окисления у кислорода при взаимодействии с другими элементами, он и его соединения получили широкое применение в промышленности. Особенно после того, как в середине двадцатого века были изобретены турбодетандеры – агрегаты, способные преобразовывать потенциальную энергию кислорода в механическую.

Так как кислород — чрезвычайно горючее вещество, то его применяют во всех отраслях промышленности, где необходимо использование огня и тепла. При резке и сварке металлов также используются баллоны со сжатым кислородом для усиления аппарата газопламенной сварки. Широко применение кислорода в сталелитейной промышленности, где с помощью сжатого O

2

поддерживается высокая температура в домнах. Максимальная степень окисления кислорода равна -2. Эта его характеристика активно используется для изготовления оксидов с целью их дальнейшего горения и выделения тепловой энергии. Жидкий кислород, озон и другие соединения, содержащие большое количество O

2,

используют как окислители ракетного топлива. Окисленные кислородом некоторые органические соединения применяют в качестве взрывчатки.

В химической промышленности кислород используется как окислитель углеводородов в кислотосодержащих соединениях, таких как спирты, кислоты и т. д. В медицине используется при пониженном давлении для лечения больных с проблемами с легкими, для поддержания жизнедеятельности организма.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygene), предложенного А.

Лавуазье (от др.-греч. ὀξύς — «кислый» и γεννάω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

Разложение кислородсодержащих веществ

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

 2KMnO4 → K2MnO4 MnO2 O2

Используют также реакцию каталитического разложения пероксида водорода H2O2 в присутствии оксида марганца (IV):

 2H2O2MnO2   2H2O O2

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

 2KClO3 → 2KCl 3O2

Разложение оксида ртути (II) (при t = 100 °C) было первым методом синтеза кислорода:

 2HgO →100oC   2Hg O2

Реакция перекисных соединений с углекислым газом

На подводных лодках и орбитальных станциях обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

 2Na2O2 2CO2 → 2Na2CO3 O2

Для соблюдения баланса объёмов поглощённого углекислого газа и выделившегося кислорода, к нему добавляют надпероксид калия. В космических кораблях для уменьшения веса иногда используется пероксид лития.

Степень окисления кислорода:

Степень окисления (окислительное число) – это вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов. Однако она не является истинным зарядом атома в молекуле.

Степень окисления соответствует числу электронов, которое следует присоединить к положительному иону (катиону), чтобы восстановить его до нейтрального атома, или отнять от отрицательного иона (аниона), чтобы окислить его до нейтрального атома.

Степень окисления (в отличие от валентности) может иметь нулевое, отрицательное и положительное значения.

Значения степени окисления записывают арабскими цифрами сверху над символом элемента. При указании степени окисления первым ставится знак, а потом численное значение, а не наоборот.

Степень окисления (в отличие от валентности) может иметь нулевое, отрицательное и положительное значения: -5, -4, -3, -2, -1, 0, 1, 2 , 3 , 4, 5, 6 , 7.

Следует помнить, что степень окисления является сугубо условной величиной, не имеющей физического смысла, но характеризующей образование химической связи межатомного взаимодействия в молекуле.

Степень окисления в ряде случаев не совпадает с валентностью. Например, в молекуле азотной кислоты степень окисления центрального атома азота равна 5, тогда как валентность равна IV.

Степень окисления зачастую не совпадает с фактическим числом электронов, которые участвуют в образовании связей.

Степень окисления кислорода равна -2, -1, -0,5, 0, 1, 2.

Степень окисления кислорода в соединениях
-2CaO, Na2O, PbO, K2O, Al2O3, Fe2O3, NO2, P2O5, CrO3, Mn2O7
-1H2O2, Na2O2, K2O2
-0,5КО2, NaO2, RbO2
0O2
1O2F2
2OF2

Все свойства атома кислорода

Таблица степеней окисления химических элементов. максимальная и минимальная степень окисления. возможные степени окисления химических элементов. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)


Раздел недели: Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.
Межфланцевые прокладки. Герметики. Уплотнительные материалы

Таблица степени окисления химических элементов

Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.

Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N2, H2, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na 1I-1, Mg 2Cl-12, Al 3F-13, Zr 4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно ( 1) и ( 2).

Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера – (-2), 0, ( 2), ( 4), ( 6) и др.).

Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

1

Водород / Hydrogen

H

( 1), (-1)

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

( 1)

4

Бериллий / Beryllium

Be

( 2)

5

Бор / Boron

B

(-1), 0, ( 1), ( 2), ( 3)

6

Углерод / Carbon

C

(-4), (-3), (-2), (-1), 0, ( 2), ( 4)

7

Азот / Nitrogen

N

(-3), (-2), (-1), 0, ( 1), ( 2), ( 3), ( 4), ( 5)

8

Кислород / Oxygen

O

(-2), (-1), 0, ( 1), ( 2)

9

Фтор / Fluorine

F

(-1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

( 1)

12

Магний / Magnesium

Mg

( 2)

13

Алюминий / Aluminum

Al

( 3)

14

Кремний / Silicon

Si

(-4), 0, ( 2), ( 4)

15

Фосфор / Phosphorus

P

(-3), 0, ( 3), ( 5)

16

Сера / Sulfur

S

(-2), 0, ( 4), ( 6)

17

Хлор / Chlorine

Cl

(-1), 0, ( 1), ( 3), ( 5), ( 7), редко ( 2) и ( 4)

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

( 1)

20

Кальций / Calcium

Ca

( 2)

21

Скандий / Scandium

Sc

( 3)

22

Титан / Titanium

Ti

( 2), ( 3), ( 4)

23

Ванадий / Vanadium

V

( 2), ( 3), ( 4), ( 5)

24

Хром / Chromium

Cr

( 2), ( 3), ( 6)

25

Марганец / Manganese

Mn

( 2), ( 3), ( 4), ( 6), ( 7)

26

Железо / Iron

Fe

( 2), ( 3), редко ( 4) и ( 6)

27

Кобальт / Cobalt

Co

( 2), ( 3), редко ( 4)

28

Никель / Nickel

Ni

( 2), редко ( 1), ( 3) и ( 4)

29

Медь / Copper

Cu

1, 2, редко ( 3)

30

Цинк / Zinc

Zn

( 2)

31

Галлий / Gallium

Ga

( 3), редко ( 2)

32

Германий / Germanium

Ge

(-4), ( 2), ( 4)

33

Мышьяк / Arsenic

As

(-3), ( 3), ( 5), редко ( 2)

34

Селен / Selenium

Se

(-2), ( 4), ( 6), редко ( 2)

35

Бром / Bromine

Br

(-1), ( 1), ( 5), редко ( 3), ( 4)

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

( 1)

38

Стронций / Strontium

Sr

( 2)

39

Иттрий / Yttrium

Y

( 3)

40

Цирконий / Zirconium

Zr

( 4), редко ( 2) и ( 3)

41

Ниобий / Niobium

Nb

( 3), ( 5), редко ( 2) и ( 4)

42

Молибден / Molybdenum

Mo

( 3), ( 6), редко ( 2), ( 3) и ( 5)

43

Технеций / Technetium

Tc

( 6)

44

Рутений / Ruthenium

Ru

( 3), ( 4), ( 8), редко ( 2), ( 6) и ( 7)

45

Родий / Rhodium

Rh

( 4), редко ( 2), ( 3) и ( 6)

46

Палладий / Palladium

Pd

( 2), ( 4), редко ( 6)

47

Серебро / Silver

Ag

( 1), редко ( 2) и ( 3)

48

Кадмий / Cadmium

Cd

( 2), редко ( 1)

49

Индий / Indium

In

( 3), редко ( 1) и ( 2)

50

Олово / Tin

Sn

( 2), ( 4)

51

Сурьма / Antimony

Sb

(-3), ( 3), ( 5), редко ( 4)

52

Теллур / Tellurium

Te

(-2), ( 4), ( 6), редко ( 2)

53

Иод / Iodine

I

(-1), ( 1), ( 5), ( 7), редко ( 3), ( 4)

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

( 1)

56

Барий / Barium

BA

( 2)

57

Лантан / Lanthanum

La

( 3)

58

Церий / Cerium

Ce

( 3), ( 4)

59

Празеодим / Praseodymium

Pr

( 3)

60

Неодим / Neodymium

Nd

( 3), ( 4)

61

Прометий / Promethium

Pm

( 3)

62

Самарий / Samarium

Sm

( 3), редко ( 2)

63

Европий / Europium

Eu

( 3), редко ( 2)

64

Гадолиний / Gadolinium

Gd

( 3)

65

Тербий / Terbium

Tb

( 3), ( 4)

66

Диспрозий / Dysprosium

Dy

( 3)

67

Гольмий / Holmium

Ho

( 3)

68

Эрбий / Erbium

Er

( 3)

69

Тулий / Thulium

Tm

( 3), редко ( 2)

70

Иттербий / Ytterbium

Ib

( 3), редко ( 2)

71

Лютеций / Lutetium

Lu

( 3)

72

Гафний / Hafnium

Hf

( 4)

73

Тантал / Tantalum

Ta

( 5), редко ( 3), ( 4)

74

Вольфрам / Tungsten

W

( 6), редко ( 2), ( 3), ( 4) и ( 5)

75

Рений / Rhenium

Re

( 2), ( 4), ( 6), ( 7), редко (-1), ( 1), ( 3), ( 5)

76

Осмий / Osmium

Os

( 3), ( 4), ( 6), ( 8), редко ( 2)

77

Иридий / Iridium

Ir

( 3), ( 4), ( 6), редко ( 1) и ( 2)

78

Платина / Platinum

Pt

( 2), ( 4), ( 6), редко ( 1) и ( 3)

79

Золото / Gold

Au

( 1), ( 3), редко ( 2)

80

Ртуть / Mercury

Hg

( 1), ( 2)

81

Талий / Thallium

Tl

( 1), ( 3), редко ( 2)

82

Свинец / Lead

Pb

( 2), ( 4)

83

Висмут / Bismuth

Bi

( 3), редко ( 3), ( 2), ( 4) и ( 5)

84

Полоний / Polonium

Po

( 2), ( 4), редко (-2) и ( 6)

85

Астат / Astatine

At

86

Радон / Radon

Ra

0

87

Франций / Francium

Fr

88

Радий / Radium

Ra

( 2)

89

Актиний / Actinium

Ac

( 3)

90

Торий / Thorium

Th

( 4)

91

Проактиний / Protactinium

Pa

( 5)

92

Уран / Uranium

U

( 3), ( 4), ( 6), редко ( 2) и ( 5)

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие, как синглетный кислород, пероксид водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода.

Физические свойства

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Хорошо растворяется в перфторированных углеводородах (20-40 об/об %).

Межатомное расстояние — 0,12074 нм. Является парамагнетиком. В жидком виде притягивается магнитом.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35 °C) — синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α-O2 — существует при температуре ниже 23,65 K; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.
  • β-O2 — существует в интервале температур от 23,65 до 43,65 K; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.
  • γ-O2 — существует при температурах от 43,65 до 54,21 K; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

Фториды кислорода

 2F2 2NaOH → 2NaF H2O OF2
 F2 O2 → O2F2

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3.

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

 4Li O2 → 2Li2O
 2Sr O2 → 2SrO

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

 2NO O2 → 2NO2

Окисляет большинство органических соединений в реакциях горения:

 2C6H6 15O2 → 12CO2 6H2O
 CH3CH2OH 3O2 → 2CO2 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

 CH3CH2OH O2 → CH3COOH H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

 2Na O2 → Na2O2
 2BaO O2 → 2BaO2
 H2 O2 → H2O2
 Na2O2 O2 → 2NaO2
 K O2 → KO2
 3KOH 3O3 → 2KO3 KOH ∗ H2O 2O2
 PtF6 O2 → O2PtF6

В этой реакции, кислород проявляет восстановительные свойства.

Электроотрицательность

Электроотрицательность  — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Оцените статью
Кислород
Добавить комментарий