- Атом и молекула скандия. формула скандия. строение скандия:
- Валентность — как определить? примеры и определение
- Валентность и формулы
- Геохимия и минералогия
- Как проявляется валентность в соединениях?
- Какая валентность у кислорода?
- Металлургия
- Применение скандия:
- Производство и потребление скандия
- Сверхтвёрдые материалы
- Скандий, свойства атома, химические и физические свойства.
- Сплавы скандия
- Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
- Таблица валентности химических элементов (1 часть):
- Таблица валентности химических элементов (2 часть):
- Таблица валентности химических элементов:
- Химические свойства
- Электронное строение кислорода
Атом и молекула скандия. формула скандия. строение скандия:
Скандий (лат. Scandium, назван в честь Скандинавии) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Sc и атомным номером 21. Расположен в 3-й группе (по старой классификации – побочной подгруппе третьей группы), четвертом периоде периодической системы.
Скандий – металл. Относится к редкоземельным элементам, а также к группе переходных металлов.
Скандий обозначается символом Sc.
Как простое вещество скандий при нормальных условиях представляет собой лёгкий, умеренно мягкий, серебристо-белый металл с характерным жёлтым отливом.
Молекула скандия одноатомна.
Химическая формула скандия Sc.
Электронная конфигурация атома скандия 1s2 2s2 2p6 3s2 3p6 3d1 4s2. Потенциал ионизации (первый электрон) атома скандия равен 633,09 кДж/моль (6,56149(6) эВ).
Строение атома скандия. Атом скандия состоит из положительно заряженного ядра ( 21), вокруг которого по четырем оболочкам движутся 21 электрон. При этом 19 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку скандий расположен в четвертом периоде, оболочек всего четыре.
Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома скандия на 3d-орбитали находится один неспаренный электрон.
Радиус атома скандия (вычисленный) составляет 184 пм.
Атомная масса атома скандия составляет 44,955912(6) а. е. м.
Валентность — как определить? примеры и определение
Валентность азота в данном химическом соединении равна трем.
Встречаются бинарные соединения (то есть соединения, состоящие только из двух видов атомов), в которых неизвестны валентности обоих атомов элементов. Как найти валентности химических элементов в этом случае?
Для определения значения валентности необходимо запомнить, что неметаллы в бинарных соединениях, расположенные на втором месте, проявляют свою низшую валентность.
Например, в сульфидах (FeS) сера расположена на втором месте и проявляет низшую валентность, равную двум.
Тогда валентность железа в данном сульфиде можно рассчитать по приведенному выше алгоритму — ее значение равно двум.
В хлоридах (например, AgCl) хлор проявляет низшую валентность, равную единице.
Валентность и формулы
Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.
Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.
Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.
Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.
Чтобы было понятно, возьмем формулу оксида железа Fe2O3. Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.
- Пример: у вас есть формулы Mn2O7. Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.
Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.
- Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р2О5.
Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.
Например: оксиды меди имеют красную (Cu2O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН)2) цвета.
А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):
Геохимия и минералогия
Среднее содержание скандия в земной коре — 10 г/т. Близки по химическим и физическим свойствам к скандию иттрий, лантан и лантаноиды. Во всех природных соединениях скандий, так же, как и его аналоги алюминий, иттрий, лантан, проявляет положительную валентность, равную трём, поэтому в окислительно-восстановительных процессах он участия не принимает.
Скандий является рассеянным элементом и входит в состав многих минералов. Собственно скандиевых минералов известно 2: тортвейтит (Sc, Y)2 Si2O7 (Sc2O3 до 53,5 %) и стерреттит (кольбекит Sc[PO4]·2H2O (Sc2O3 до 39,2 %). Относительно небольшие концентрации обнаружены примерно в 100 минералах.
В связи с тем, что по свойствам скандий близок к Mg, Al, Ca, Mn2 , Fe2 , TR (редкоземельным элементам), Hf, Th, U, Zr, главная масса его рассеивается в минералах, содержащих эти элементы. Имеет место изовалентное замещение скандием элементов группы TR, особенно в существенно иттриевых минералах (ксенотим, ассоциация Sc — Y в тортвейтите и замещение Al в берилле).
Основные минералы-носители скандия: флюорит (до 1 % Sc2O3), касситерит (0,005—0,2 %), вольфрамит (0—0,4 %), ильменорутил (0,0015—0,3 %), торианит (0,46 % Sc2O3), самарскит (0,45 %), виикит (1,17 %), ксенотим (0,0015—1,5 %)
, берилл (0,2 %), баццит (скандиевый берилл, 3—14,44 %). В процессе формирования магматических пород и их жильных производных скандий в главной своей массе рассеивается преимущественно в темноцветных минералах магматических пород и в незначительной степени концентрируется в отдельных минералах постмагматических образований.
Наиболее высокие (30 г/т Sc2O3) концентрации скандия приурочены к ультраосновным и основным породам, в составе которых ведущую роль играют железо-магнезиальные минералы (пироксен, амфибол и биотит). В породах среднего состава среднее содержание Sc2O3 10 г/т, в кислых — 2 г/т.
Как проявляется валентность в соединениях?
Кислород способен непосредственно взаимодействовать со многими химическими элементами. Известны его соединения практически со всеми представителями таблицы Менделеева (за исключением инертных газов: аргона, гелия, неона). В реакцию с галогенами, благородными металлами кислород может непосредственно не вступать, но оксиды Au2O3, F2O, Cl2O7 и другие существуют (получают косвенно).
Для бинарных соединений, в образовании которых принимает участие кислород, характерны ковалентная связь и полярность. Валентность в таких молекулах зависит от числа возникших пар электронов, к которым притягиваются ядра разных атомов. В подавляющем большинстве соединений атомы кислорода участвуют в создании двух ковалентных связей.
Например, в оксидах СО2, Р2О5, SO2, SO3, К2О, В2О3, Мо2О5 и в других молекулах. В катионе гидроксония Н3О кислород проявляет нетипичную для него валентность III.
Какая валентность у кислорода?
На первоначальном этапе накопления знаний о свойствах и строении веществ химики думали, что валентность — это способность связывать определенное количество атомов в молекулу вещества. Многие ученые после открытия элемента пытались понять, какая валентность у кислорода.
Ответ был получен экспериментальным путем: кислород присоединяет в химической реакции два атома одновалентного водорода, значит, двухвалентен. Представления о химической связи менялись по мере накопления знаний о строении вещества. В своей теории валентности Г. Льюис и В.
Коссель раскрывают сущность химического взаимодействия с точки зрения электронного строения. Исследователи объясняли способность атома к образованию определенного числа связей стремлением к наиболее устойчивому энергетическому состоянию. В случае его достижения наименьшая частица вещества становится более стабильной.
Металлургия
Применение скандия в виде микролегирующей примеси оказывает значительное влияние на ряд практически важных сплавов, так, например, прибавление 0,4 % скандия к сплавам алюминий-магний повышает временное сопротивление разрыву на 35 %, а предел текучести на 65—84 %, и при этом относительное удлинение остаётся на уровне 20—27 %.
Добавка 0,3—0,67 % к хрому повышает его устойчивость к окислению вплоть до температуры 1290 °C, и аналогичное, но ещё более ярко выраженное действие оказывает на жаростойкие сплавы типа «нихром» и в этой области применение скандия куда как эффективнее иттрия.
Оксид скандия обладает рядом преимуществ для производства высокотемпературной керамики перед другими оксидами, так, прочность оксида скандия при нагревании возрастает и достигает максимума при 1030 °C, в то же время оксид скандия обладает минимальной теплопроводностью и высочайшей стойкостью к термоудару.
Применение скандия:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Производство и потребление скандия
В 1988 году производство оксида скандия в мире составило:
Следует учесть колоссальные ресурсы скандия в России и бывшем Советском Союзе (данные по добыче весьма разрозненны, но объёмы добычи, по оценкам независимых специалистов, равны или превышают официальную мировую добычу). В целом, по оценкам независимых специалистов, в настоящее время основными продуцентами скандия (оксида скандия)
являются Россия, Китай, Украина и Казахстан. Публикуемые в печати объёмы скандия/оксида скандия в США, Японии, Франции — это в большей степени вторичный металл и металл, закупленный на мировом рынке. В определённой степени в ближайшие годы ожидается значительный объём поступлений скандиевого сырья из Австралии, Канады, Бразилии.
Следует также отметить, что запасы редкоземельного сырья в Монголии, содержащего скандий, — это также перспективный источник скандия для скандиевой промышленности и развития металлургии скандия.
Скандий смело можно назвать металлом XXI века и прогнозировать резкий рост его добычи, рост цен и спрос в связи с переработкой огромного количества каменных углей (особенно переработка каменных углей России) на жидкое топливо.
Сверхтвёрдые материалы
Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7—120 ГПа), нитрида бора (боразона)
, (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше, чем у карбида бора (43,2—52 ГПа), карбида кремния (37 ГПа). Микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана, например, 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости.
Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и во многих отношениях подходит для аэрокосмической техники, превосходя в этом отношении лучшие сплавы из известных человечеству на основе титана, и ряд композиционных материалов (в том числе ряд материалов на основе нитей углерода и бора).
Скандий, свойства атома, химические и физические свойства.
Sc 21 Скандий
44,955912(6) 1s2 2s2 2p6 3s2 3p6 3d1 4s2
Скандий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 21. Расположен в 3-й группе (по старой классификации — побочной подгруппе третьей группы), четвертом периоде периодической системы.
Атом и молекула скандия. Формула скандия. Строение скандия
Изотопы и модификации скандия
Свойства скандия (таблица): температура, плотность, давление и пр.
Физические свойства скандия
Химические свойства скандия. Взаимодействие скандия. Реакции с скандием
Получение скандия
Применение скандия
Таблица химических элементов Д.И. Менделеева
Сплавы скандия
Главным по объёму применением скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, велосипеды, бейсбольные биты и т. п.) — везде, где требуются высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость.
Например, легирование алюмо-магниевого сплава АМг6 скандием в отсутствие дополнительного упрочнения повышает предел прочности с 32 до 36 кгс/мм2, а предел текучести — с 16 до 24 кгс/мм2 (после 30-процентной нагартовки те же показатели составляют соответственно 42 и 33 кгс/мм2 у АМг6НПП против 45 и 36 кгс/мм2 у сплава 01570Н).
Для сравнения, предел прочности на разрыв у чистого скандия около 400 МПа (40 кгс/мм2), у титана, например, 250—350 МПа, а у нелегированного иттрия — 300 МПа. Применение скандиевых сплавов в авиации и гражданском ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство, что скандий упрочняет алюминиевые сплавы, легированные гафнием.
Важной и практически не изученной областью применения скандия является то обстоятельство, что подобно легированию иттрием алюминия легирование чистого алюминия скандием также повышает электропроводность проводов, и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП).
Сплавы скандия — наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия, композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов. В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм2 (свыше 7000 МПа).
Некоторое количество скандия расходуется для легирования жаростойких сплавов никеля с хромом и железом (нихромы и фехрали) для резкого увеличения срока службы при использовании в качестве нагревательной обмотки для печей сопротивления.
Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
Валентность химических элементов – это способность у атомов химических элементов образовывать некоторое число химических связей. Определяется числом электронов атома затраченых на образование химических связей с другим атомом. Справочно: Электронные формулы атомов химических элементов.
Считается, что валентность химических элементов определяется группой (колонкой) Периодической таблицы . Действительно, теоретически, это самая распространенная валентность для элемента, но на практике поведение химических элементов значительно сложнее. Причина множественности значений валентности заключается в том, что существуют различные способы (или варианты) заполнения, при которых электронные оболочки стабилизируются. Поэтому, предлагаем Вашему вниманию таблицу валентностей химических элементов.
Числовое значение положительной валентности элемента равно числу отданных атомом электронов, а отрицательной валентности – числу электронов, которые атом должен присоединить для завершения внешнего энергетического уровня. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное..
|
Таблица валентности химических элементов (1 часть):
Атомный номер | Химический элемент | Символ | Валентность | Примеры соединений | Примечание |
1 | Водород | H | I | HCl, H2O2 | |
2 | Гелий | He | отсутствует | ||
3 | Литий | Li | I | LiOH, Li2O | |
4 | Бериллий | Be | I, II | ||
5 | Бор | B | III | B2O3 | |
6 | Углерод | C | II, IV | ||
7 | Азот | N | I, II, III, IV |
| В азотной кислоте (HNO3) и своем высшем оксиде (N2O5) атом азота образует только четыре ковалентные связи, являясь четырехвалентным |
8 | Кислород | O | II | (NO)F, CaO, O2, H2O2,Cl2O, H2O | |
9 | Фтор | F | I | HF, (NO)F | |
10 | Неон | Ne | отсутствует | ||
11 | Натрий | Na | I | Na2S, Na2O | |
12 | Магний | Mg | II | Mg(NO3)2 | |
13 | Алюминий | Al | III | Al2O3, Al2S3, AlCl3 | |
14 | Кремний | Si | II, IV | ||
15 | Фосфор | P | III, V |
| |
16 | Сера | S | II, IV, VI |
| |
17 | Хлор | Cl | I, III, IV, V, VI, VII |
| |
18 | Аргон | Ar | отсутствует | ||
19 | Калий | K | I | KOH, K2O, K2S | |
20 | Кальций | Ca | II | Ca(OH)2 | |
21 | Скандий | Sc | III | Sc2O3 | |
22 | Титан | Ti | II, III, IV | ||
23 | Ванадий | V | II, III, IV, V | ||
24 | Хром | Cr | II, III, VI | ||
25 | Марганец | Mn | II, III, IV, VI, VII |
| |
26 | Железо | Fe | II, III |
| |
27 | Кобальт | Co | II, III | ||
28 | Никель | Ni | II, III | ||
29 | Медь | Cu | I, II | ||
30 | Цинк | Zn | II | ZnSO4, ZnO, ZnS |
Таблица валентности химических элементов (2 часть):
31 | Галлий | Ga | I, II, III | ||
32 | Германий | Ge | II, IV | ||
33 | Мышьяк | As | III, V | ||
34 | Селен | Se | II, IV, VI | ||
35 | Бром | Br | I, III, V, VII | ||
36 | Криптон | Kr | отсутствует | ||
37 | Рубидий | Rb | I | RbOH | |
38 | Стронций | Sr | II | SrO | |
39 | Иттрий | Y | III | Y(NO3)3 | |
40 | Цирконий | Zr | II, III, IV | ||
41 | Ниобий | Nb | I, II, III, IV, V | ||
42 | Молибден | Mo | II, III, IV, V, VI |
| |
43 | Технеций | Tc | II, III, IV, V, VI, VII |
| |
44 | Рутений | Ru | II, III, IV, V, VI, VII, VIII |
| |
45 | Родий | Rh | II, III, IV, V, VI |
| |
46 | Палладий | Pd | II, IV | ||
47 | Серебро | Ag | I, II, III | ||
48 | Кадмий | Cd | I, II | ||
49 | Индий | In | I, II, III | ||
50 | Олово | Sn | II, IV | ||
51 | Сурьма | Sb | III, V | ||
52 | Теллур | Te | II, IV, VI | ||
53 | Йод | I | I, III, V, VII | ||
54 | Ксенон | Xe | отсутствует | ||
55 | Цезий | Cs | I | Cs2O | |
56 | Барий | Ba | II | Ba(OH)2 | |
57 | Лантан | La | III | La2(SO4)3 | |
58 | Церий | Ce | III, IV | ||
59 | Празеодим | Pr | II, III, IV | ||
60 | Неодим | Nd | II, III |
Таблица валентности химических элементов:
Ниже приводится таблица валентности химических элементов с примерами соединений.
Валентность (от лат. valēns – «имеющий силу») – способность атомов химических элементов образовывать определённое число химических связей.
Валентность – это мера (численная характеристика) способности химических элементов образовывать определённое число химических связей.
Значения валентности записывают римскими цифрами I, II, III, IV, V, VI, VII, VIII.
Валентность определяют по числу химических связей, которые один атом образует с другими.
Таблица валентности химических элементов:
Атомный номер | Химический элемент | Символ | Валентность | Примеры соединений | Примечание |
1 | Водород | H | I | HCl | |
2 | Гелий | He | отсутствует | ||
3 | Литий | Li | I | LiOH | |
4 | Бериллий | Be | I, II | BeH, BeCO3 | |
5 | Бор | B | III | B2O3 | |
6 | Углерод | C | II, IV | CO, CH4 | |
7 | Азот | N | I, II, III, IV | N2O, NO, N2O3, NO2 | В азотной кислоте (HNO3) и своем высшем оксиде (N2O5) атом азота образует только четыре ковалентные связи, являясь четырехвалентным |
8 | Кислород | O | II | CaO | |
9 | Фтор | F | I | HF | |
10 | Неон | Ne | отсутствует | ||
11 | Натрий | Na | I | Na2S | |
12 | Магний | Mg | II | Mg(NO3)2 | |
13 | Алюминий | Al | III | AlCl3 | |
14 | Кремний | Si | II, IV | SiO, SiO2 | |
15 | Фосфор | P | III, V | P2O3, P2O5 | |
16 | Сера | S | II, IV, VI | H2S, SO2, SO3 | |
17 | Хлор | Cl | I, III, IV, V, VI, VII | NaCl, NaClO2, NaClO2, KClO3, Cl2O6, Cl2O7 | |
18 | Аргон | Ar | отсутствует | ||
19 | Калий | K | I | KOH | |
20 | Кальций | Ca | II | Ca(OH)2 | |
21 | Скандий | Sc | III | Sc2O3 | |
22 | Титан | Ti | II, III, IV | TiO, Ti2O3, TiO2 | |
23 | Ванадий | V | II, III, IV, V | VO, V2O3, VO2, V2O5 | |
24 | Хром | Cr | II, III, VI | CrO, Cr2O3, CrO3 | |
25 | Марганец | Mn | II, III, IV, VI, VII | Mn(OH)2, Mn2O3, MnO2, MnO3, Mn2O7 | |
26 | Железо | Fe | II, III | Fe(OH)2, Fe(OH)3 | |
27 | Кобальт | Co | II, III | CoCl2, CoCl3 | |
28 | Никель | Ni | II, III | NiO, Ni2O3 | |
29 | Медь | Cu | I, II | Cu2O, CuO | |
30 | Цинк | Zn | II | ZnSO4 | |
31 | Галлий | Ga | I, II, III | Ga2Se, GaSe, Ga2Se3 | |
32 | Германий | Ge | II, IV | GeO, GeO2 | |
33 | Мышьяк | As | III, V | As2O3, As2O5 | |
34 | Селен | Se | II, IV, VI | H2Se, SeCl4, H2SeO4 | |
35 | Бром | Br | I, III, V, VII | HBr, HBrO2, HBrO3, HBrO4 | |
36 | Криптон | Kr | отсутствует | ||
37 | Рубидий | Rb | I | RbOH | |
38 | Стронций | Sr | II | SrO | |
39 | Иттрий | Y | III | Y(NO3)3 | |
40 | Цирконий | Zr | II, III, IV | ZrF2, ZrBr3, ZrCl4 | |
41 | Ниобий | Nb | I, II, III, IV, V | NbH, NbO, NbI3, NbO2, Nb2O5 | |
42 | Молибден | Mo | II, III, IV, V, VI | MoCl2, Mo(OH)3, MoO2, MoCl5, MoF6 | |
43 | Технеций | Tc | II, III, IV, V, VI, VII | TcCl2, TcBr3, TcBr4, TcF5, TcCl6, Tc2O7 | |
44 | Рутений | Ru | II, III, IV, V, VI, VII, VIII | Ru(OH)2, RuCl3, Ru(OH)4, Ru2O5, RuB2, NaRuO4, RuO4 | |
45 | Родий | Rh | II, III, IV, V, VI | RhO, Rh2(SO4)3, Rh(OH)4, RhF5, RhF6 | |
46 | Палладий | Pd | II, IV | PdO, PdO2 | |
47 | Серебро | Ag | I, II, III | Ag2O, AgO, Ag3P | |
48 | Кадмий | Cd | I, II | Cd2O, CdO | |
49 | Индий | In | I, II, III | In2O, InO, In2O3 | |
50 | Олово | Sn | II, IV | SnSO4, Sn(SO4)2 | |
51 | Сурьма | Sb | III, V | Sb2S3, Sb2S5 | |
52 | Теллур | Te | II, IV, VI | H2Te, TeO2, K2TeO4 | |
53 | Йод | I | I, III, V, VII | HI, HIO2, HIO3, HIO4 | |
54 | Ксенон | Xe | отсутствует | ||
55 | Цезий | Cs | I | Cs2O | |
56 | Барий | Ba | II | Ba(OH)2 | |
57 | Лантан | La | III | La2(SO4)3 | |
58 | Церий | Ce | III, IV | Ce(NO3)3, CeO2 | |
59 | Празеодим | Pr | II, III, IV | PrO, Pr2O3, PrO2 | |
60 | Неодим | Nd | II, III | NdO, Nd2O3 | |
61 | Прометий | Pm | III | PmBr3 | |
62 | Самарий | Sm | II, III | SmO, Sm(NO3)3 | |
63 | Европий | Eu | II, III | EuO, Eu(OH)3 | |
64 | Гадолиний | Gd | II, III | GdS, Gd2O3 | |
65 | Тербий | Tb | II, III, IV | TbH2, TbBr3, TbO2 | |
66 | Диспрозий | Dy | II, III | DyBr2, Dy2O3 | |
67 | Гольмий | Ho | III | Ho2(SO4)3 | |
68 | Эрбий | Er | III | Er2O3 | |
69 | Тулий | Tm | II, III | TmS, Tm2O3 | |
70 | Иттербий | Yb | II, III | YbBr2, Yb2O3 | |
71 | Лютеций | Lu | III | LuBr3 | |
72 | Гафний | Hf | I, II, III, IV | HfCl, HfS, HfBr3, Hf(SO4)2 | |
73 | Тантал | Ta | I, II, III, IV, V | Ta2O, TaO, TaCl3, TaO2, Ta2O5 | |
74 | Вольфрам | W | II, III, IV, V, VI | W6Cl12, WO3, WO2, W2Cl10, WF6 | |
75 | Рений | Re | I, II, III, IV, V, VI, VII | Re2O, ReO, Re2O3, ReO2, ReF5, ReCl6, ReF7 | |
76 | Осмий | Os | I, II, III, IV, V, VI, VII, VIII | OsI, OsI2, OsBr3, OsO2, OsCl4, OsF5, OsF6, OsOF5, OsO4 | |
77 | Иридий | Ir | I, II, III, IV, V, VI | IrCl, IrCl2, IrCl3, IrO2, Ir4F20, IrF6 | |
78 | Платина | Pt | II, III, IV, V, VI | PtO, Pt2O3, PtO2, PtF5, PtF6, | |
79 | Золото | Au | I, II, III, V | AuBr, AuS, Au2O3, Au2F10 | |
80 | Ртуть | Hg | I, II | GdHg3, HgH2 | |
81 | Таллий | Tl | I, II, III | Tl2S, TlS, TlBr3, | |
82 | Свинец | Pb | II, IV | PbO, PbO2 | |
83 | Висмут | Bi | III, V | Bi2O3, Bi2O5, | |
84 | Полоний | Po | II, IV, VI | ||
85 | Астат | At | нет данных | ||
86 | Радон | Rn | отсутствует | ||
87 | Франций | Fr | I | FrOH | |
88 | Радий | Ra | II | Ra(OH)2 | |
89 | Актиний | Ac | III | Ac2O3 | |
90 | Торий | Th | II, III, IV | ThI2, ThI3, Th(OH)4 | |
91 | Протактиний | Pa | II, III, IV, V | PaO, PaH3, Pa(OH)4, Pa2O5 | |
92 | Уран | U | III, IV, V, VI | ||
93 | Нептуний | Np | III, IV, V, VI, VII | ||
94 | Плутоний | Pu | III, IV, V, VI, VII | ||
95 | Америций | Am | II, III, IV, V, VI | ||
96 | Кюрий | Cm | II, III, IV | ||
97 | Берклий | Bk | III, IV | ||
98 | Калифорний | Cf | II, III, IV | ||
99 | Эйнштейний | Es | II, III | ||
100 | Фермий | Fm | II, III |
Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.
Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента.
Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K2O, CO, N2O3, SiO2, SO3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.
С точки зрения электронной теории валентность определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии.
Известны элементы, которые проявляют постоянную валентность. У большинства химических элементов валентность переменная.
Таблица химических элементов Д.И. Менделеева
Химические свойства
При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.
1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.
1.1. Кислород реагирует с фтором с образованием фторидов кислорода:
O2 2F2 → 2OF2
С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.
1.2. Кислород реагирует с серой и кремниемс образованием оксидов:
S O2 → SO2
Si O2 → SiO2
1.3.Фосфоргорит в кислороде с образованием оксидов:
При недостатке кислорода возможно образование оксида фосфора (III):
4P 3O2 → 2P2O3
Но чаще фосфор сгорает до оксида фосфора (V):
4P 5O2 → 2P2O5
1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):
N2 O2→ 2NO
1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:
2Ca O2 → 2CaO
Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:
2Na O2→ Na2O2
А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:
K O2→ KO2
Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.
Цинк окисляется до оксида цинка (II):
2Zn O2→ 2ZnO
Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:
2Fe O2→ 2FeO
4Fe 3O2→ 2Fe2O3
3Fe 2O2→ Fe3O4
1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):
C O2 → CO2
при недостатке кислорода образуется угарный газ СО:
2C O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Кислород взаимодействует со сложными веществами:
2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:
4FeS 7O2→ 2Fe2O3 4SO2
Al4C3 6O2→ 2Al2O3 3CO2
Ca3P2 4O2→ 3CaO P2O5
2.2. Кислород окисляет бинарные соединения неметаллов:
- летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды:
2H2S 3O2→ 2H2O 2SO2
Аммиакгорит с образованием простого вещества, азота:
4NH3 3O2→ 2N2 6H2O
Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):
4NH3 5O2→ 4NO 6H2O
- прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):
CS2 3O2→ CO2 2SO2
- некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):
2CO O2→ 2CO2
2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.
Например, кислород окисляет гидроксид железа (II):
4Fe(OH)2 O2 2H2O → 4Fe(OH)3
Кислород окисляет азотистую кислоту:
2HNO2 O2 → 2HNO3
2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:
CH4 2O2→ CO2 2H2O
2CH4 3O2→ 2CO 4H2O
CH4 O2→ C 2H2O
Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)
2CH2=CH2 O2 → 2CH3-CH=O
Электронное строение кислорода
Электронная конфигурация кислорода в основном состоянии:
😯 1s22s22p4 1s 2s
2s
2p
Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.