- Азотная кислота
- Аммиак — урок. химия, 9 класс.
- Аммиак легче или тяжелее воздуха?
- Аммиак, жидкость, твердое тело, характеристики:
- Аммиак, получение, свойства, химические реакции.
- Биологическая роль
- История
- Какие газы легче воздуха? — faq | урал-тест в перми
- Какие из указанных газов легче воздуха: углекислый газ, азот…
- Комплексообразование
- Оксиды азота
- Первая доврачебная помощь при поражении аммиаком
- Получение
- Применение
- Производители аммиака
- Способы получения аммиака
- Физиологическое действие
- Физические свойства аммиака:
- Химические свойства
- Химические свойства азота
- Химические свойства аммиака
Азотная кислота
Азотная кислота — одна из важнейших неорганических кислот. Это летучая бесцветная жидкость с резким запахом, которая способна смешиваться с водой в любых пропорциях.
Получают ее в промышленности в несколько этапов. Рассмотрим подробнее каждый из них:
Окисление аммиака кислородом воздуха на платиновом катализаторе
4NH3 5O2 = 4NO 6H2OОкисление оксида азота (II)
2NO O2 = 2NO2Поглощение образующегося оксида азота (IV) водой в избытке воздуха
4NO2 O2 2H2O = 4HNO3
Для азотной кислоты характерны особые химические свойства исходя из ее концентрации.
Например, с металлами данная кислота никогда не будет реагировать с выделением газообразного водорода. Рассмотрим таблицу с примерами металлов с различными концентрациями азотной кислоты:
Также азотная кислота как сильный окислитель способна окислять некоторые неметаллы до их кислот. Давайте рассмотрим примеры:
Азотная кислота в соотношении 1:3 с соляной кислотой образуют смесь под названием царская водка. Это желтовато-оранжевая дымящаяся жидкость, которая получила свое название от алхимиков благодаря способности растворять «царские» металлы — золото и платину.
Аммиак — урок. химия, 9 класс.
Аммиак легче или тяжелее воздуха?
Казалось бы, и концентрированная соляная кислота, и концентрированный водный раствор аммиака одинаково хорошо должны дымить на воздухе, потому что оба выделяют газ — хлороводород и аммиак (что легко почувствовать по очень сильному запаху даже на значительном расстоянии от раствора). Однако дымит только соляная кислота. Значит, дело в разных свойствах молекул HCl и NH3. И они в определенном отношении действительно разные. Молекулы хлороводорода в водном растворе диссоциируют практически на 100%, образуя катионы водорода и анионы хлора. Эти ионы в присутствии молекул воды окружают себя огромным количеством этих молекул с образованием многослойной гидратной «шубы» (процесс сопровождается большим выделением тепла). В результате образуются мельчайшие капельки тумана. А молекулы аммиака NH3 не диссоциируют вообще и можно предположить, что молекулы воды к ним «не притягиваются», потому туман не образуется. Кроме того, в водном растворе аммиака ионов NH4 и ОН- немного, и они гидратируются значительно слабее, чем ионы Н и Cl- в растворах соляной кислоты.
Лера Кондра родилась 27.05.1985года.В городе Москва.Валерия актриса,певица и телеведущая.Папа Леры тренер сборной России по волейболу,хотел чтобы она стала спортивным журналистом.Но мечтой Леры было стать манекенщицей,и она прошла обучение в модельном агентстве.Вскоре по настоянию родителей она поступила на факультет журналистики.Вскоре ее приглосил к сотруднечеству канал муз ТВ,где она снилась в клипе Ираклия Пирцхалавы»сделай шаг».Лера поступила в ГИТИС.Сольная карьера Леры началась с видеоклипа «бармен Саша»,который появился в 2022году.Так же Валерия снилась в двух картинах»любовь в большом городе 2″,»Ржевский против Наполеона».У Леры был роман с репер Гуфом,она даже собиралась родить ему ребёнка.Но в прошлом году Кондра и Гуф разошлись.На данный момент Лера не замужем.
Аммиак, жидкость, твердое тело, характеристики:
Жидкий аммиак – бесцветная жидкость, сильно преломляющая свет.
Аммиак как жидкость является хорошим растворителем для очень большого числа органических, а также для многих неорганических соединений. В жидком аммиаке хорошо растворяются щелочные, щелочноземельные металлы, а также другие простые вещества, как, например, фосфор, йод, сера.
Чистый жидкий аммиак является диэлектриком, поэтому способен к образованию на стенках сосудов статического электричества.
Сжиженный безводный аммиак относится к трудногорючим веществам.
Жидкий аммиак или струя газа, попадая на кожу человека, вызывает сильные ожоги.
Твёрдый аммиак внешне представляет собой снегообразную массу из кубических кристаллов правильной формы.
Аммиак, получение, свойства, химические реакции.
Аммиак, NH3 – химическое соединение азота и водорода, состоящее из одного атома азота и трех атомов водорода, нитрид водорода.
Аммиак, формула, газ, характеристики
Видеоурок “Аммиак”
Аммиак, жидкость, твердое тело, характеристики
Физические свойства аммиака
Химические свойства аммиака
Получение аммиака в промышленности и лаборатории
Химические реакции – уравнения получения аммиака
Применение и использование аммиака
Биологическая роль
Аммиак является важным источником азота для живых организмов. Несмотря на высокое содержание свободного азота в атмосфере (более 75 %), очень мало живых существ способны использовать свободный, нейтральный двухатомный азот атмосферы, газ N2.
Поэтому для включения азота атмосферы в биологический оборот, в частности в синтез аминокислот и нуклеотидов, необходим процесс, который называется «азотфиксацией». Некоторые растения зависят от доступности аммиака и других нитрогенных соединений, образующихся в почве в результате разложения органических (растительных и животных) остатков.
Другие, такие как бобовые, используют преимущества симбиоза с азотфиксирующими бактериями (ризобиями), которые способны синтезировать аммиак из атмосферного азота с помощью ферментов, называемых нитрогеназами. И хотя маловероятно, что когда-либо будут изобретены биомиметические методы, способные конкурировать по производительности с химическими методами производства аммиака из азота, тем не менее, учёные прилагают большие усилия к тому, чтобы как можно лучше понять механизмы биологической фиксации азота.
Научный интерес к этой проблеме отчасти мотивируется необычной структурой активного каталитического центра азотфиксирующего фермента (нитрогеназы), которая содержит необычный биметаллический молекулярный ансамбль Fe7MoS9.
Аммиак является также конечным побочным продуктом метаболизма аминокислот, а именно продуктом их дезаминирования, катализируемого такими ферментами, как глутамат-дегидрогеназа. Экскреция аммиака в неизменённом виде является обычным путём детоксикации аммиака у водных существ (рыбы, водные беспозвоночные, отчасти амфибии).
У млекопитающих, включая человека, аммиак обычно быстро превращается в мочевину, которая гораздо менее токсична и, в частности, имеет менее щелочную реакцию и меньшую реакционную способность в качестве восстановителя. Мочевина является основным компонентом сухого остатка мочи.
Аммиак также играет важную роль как в нормальной, так и в патологической физиологии животных. Аммиак производится в процессе нормального метаболизма аминокислот, однако весьма токсичен в высоких концентрациях. Печень животных преобразует аммиак в мочевину с помощью серии последовательных реакций, известных как цикл мочевины.
Нарушение функции печени, такое, например, какое наблюдается при циррозе печени, может приводить к нарушению способности печени обезвреживать аммиак и образовывать из него мочевину, и, как следствие, к повышению уровня аммиака в крови, состоянию, называемому гипераммониемия.
К аналогичному результату — повышению уровня свободного аммиака в крови и развитию гипераммониемии — приводит наличие врождённых генетических дефектов в ферментах цикла мочевины, таких, например, как орнитин-карбамилтрансфераза. К тому же результату может приводить нарушение выделительной функции почек при тяжёлой почечной недостаточности и уремии: вследствие задержки выделения мочевины её уровень в крови возрастает настолько, что «цикл мочевины» начинает работать «в обратную сторону» — избыток мочевины гидролизуется обратно почками в аммиак и углекислый газ, и, как следствие, уровень аммиака в крови возрастает.
Гипераммониемия привносит свой вклад в нарушения сознания и развитие сопорозных и коматозных состояний при печёночной энцефалопатии и уремии, а также в развитие неврологических нарушений, часто наблюдаемых у больных с врождёнными дефектами ферментов цикла мочевины или с органическими ацидуриями.
Менее выраженная, однако клинически существенная, гипераммониемия может наблюдаться при любых процессах, при которых наблюдается повышенный катаболизм белков, например, при обширных ожогах, синдроме сдавления или размозжения тканей, обширных гнойно-некротических процессах, гангрене конечностей, сепсисе и т. д., а также при некоторых эндокринных нарушениях, таких, как сахарный диабет, тяжёлый тиреотоксикоз.
Особенно высока вероятность возникновения гипераммониемии при этих патологических состояниях в тех случаях, когда патологическое состояние, помимо повышенного катаболизма белков, вызывает также выраженное нарушение детоксицирующей функции печени или выделительной функции почек.
Аммиак важен для поддержания нормального кислотно-щелочного баланса крови. После образования аммиака из глютамина, альфа-кетоглутарат может быть далее расщеплён с образованием двух молекул гидрокарбоната, которые затем могут использоваться как буфер для нейтрализации кислот, поступающих с пищей.
Полученный из глютамина аммиак затем выделяется с мочой (как непосредственно, так и в виде мочевины), что, с учётом образования двух молекул бикарбоната из кетоглутарата, приводит в сумме к потере кислот и сдвигу pH крови в щелочную сторону. Кроме того, аммиак может диффундировать через почечные канальцы, соединяться с ионом водорода и экскретироваться совместно с ним ( NH3 H ⟶ NH4 ), и тем самым ещё больше способствовать выведению кислот из организма.
Аммиак и ионы аммония являются токсическим побочным продуктом метаболизма у животных. У рыб и водных беспозвоночных аммиак выделяется непосредственно в воду. У млекопитающих (включая водных млекопитающих), земноводных и у акул аммиак в цикле мочевины преобразуется в мочевину, поскольку мочевина гораздо менее токсична, менее химически реакционноспособна и может более эффективно «храниться» в организме до момента возможности её выделения.
История
Аммиак был впервые выделен в чистом виде Дж. Пристли в 1774 году, который назвал его «щелочной воздух» (англ. alkaline air). Через одиннадцать лет, в 1785 году К. Бертолле установил точный химический состав аммиака. С того времени в мире начались исследования по получению аммиака из азота и водорода.
Аммиак был очень нужен для синтеза соединений азота, поскольку получение их из чилийской селитры ограничивалось постепенным истощением запасов последней. Проблема уменьшения запасов селитры обострилась к концу XIX века. Только в начале XX века удалось изобрести процесс синтеза аммиака, пригодный для промышленности.
Это осуществил Ф. Габер, начавший трудиться над этой задачей в 1904 году и к 1909 году создавший небольшой контактный аппарат, в котором использовал повышенное давление (в соответствии с принципом Ле-Шателье) и катализатор из осмия. 2 июля 1909 года Габер устроил испытания аппарата в присутствии К. Боша и А.
Митташа, оба — от Баденского анилинового и содового завода (BASF), и получил аммиак. К. Бош к 1911 году создал крупномасштабную версию аппарата для BASF, а затем был построен и 9 сентября 1913 года вступил в строй первый в мире завод по синтезу аммиака, который был расположен в Оппау (ныне район в черте города Людвигсхафен-на-Рейне) и принадлежал BASF.
Какие газы легче воздуха? — faq | урал-тест в перми
Количество газов, которые легче воздуха, невелико.
Способ определения того, какие газы легче или тяжелее воздуха, заключается в сравнении их молекулярного веса (который вы можете найти в списке обнаруживаемых газов). Вы даже можете вычислить молекулярный вес M вещества, если вам известна химическая формула, установив H = 1, C = 12, N = 14, и O = 16 г/моль.
Пример:
Этанол, химическая формула C2H5OH, содержит 2 C, 6 H, и 1 O,
отсюда M = 2∗12 6∗1 1∗16 =46 г/моль.
Метан, химическая формула CH4, содержит 1 C и 4 H,
отсюда M = 1∗12 4∗1 = 16 г/моль.
Молекулярный вес воздуха, состоящего из 20,9 объемн. % O2 (M = 2∗16 = 32 г/моль) и 79,1 объемн. % N2 (M = 2∗14 = 28 г/моль), составляет 0,209∗32 0,791∗28 = 28,836 г/моль.
Вывод: любое вещество с молекулярным весом менее 28,836 г/моль легче воздуха.
Удивительно, что существует лишь 12 газов легче воздуха:
ГАЗ | ФОРМУЛА | МОЛ.ВЕС | ОТН.ВЕС (Воздух=1) | ТОЧКА КИПЕНИЯ | ГОРЮЧЕСТЬ |
Водород | Н2 | 2 | 0,069 | — 252.8 °C | Да |
Гелий | He | 4 | 0,139 | — 268.9 °C | Нет |
Метан | СН4 | 16 | 0,560 | — 161.5 °C | Да |
Аммиак | NH3 | 17 | 0,589 | — 33.4 °C | Да |
Фтористый водород | HF | 20 | 0,694 | 19.5 °C | Нет |
Неон | Ne | 20 | 0,694 | — 246.1 °C | Нет |
Ацетилен | С2Н2 | 26 | 0,902 | — 84.0 °C | Да |
Диборан | В2Н6 | 27 | 0,936 | — 92.5 °C | Да |
Синильная кислота | HCN | 27 | 0,936 | 25.7 °C *) | Да |
Угарный газ | СО | 28 | 0,971 | — 191.6 °C | Да |
Азот | N2 | 28 | 0,971 | — 195.8 °C | Нет |
Этилен(Этен) | С2Н4 | 28 | 0,971 | — 103.8 °C | Да |
*) На самом деле синильная кислота в большей степени жидкость, нежели газ, давление ее паров составляет 817 мбар при 20 °C (по определению, газы имеют точку кипения ниже 20°C).
Кстати: пары еще одного, крайне важного негорючего вещества легче воздуха: H2O, молярный вес — 18 г/моль. Вывод: сухой воздух тяжелее влажного, который поднимается и конденсируется наверху в облаках.
Что касается размещения сенсоров на горючие газы, то это необходимо учитывать лишь для метана, водорода и аммиака. Эти газы поднимаются вверх до потолка, где и следует устанавливать сенсоры.
Помните, что любые горючие пары тяжелее воздуха!
Какие из указанных газов легче воздуха: углекислый газ, азот…
В параграфе учебника было сказано, что относительная молекулярная масса воздуха принята за 29. Значит, газы легче воздуха, должны обладать меньшей относительной молекулярной массой. Проведем расчеты:
Mr (CO2) = Ar (C) 2 * Ar (O) = 12 2 * 16 = 44.
Mr (N2) = 2 * Ar (N) = 2 * 14 = 28.
Mr (O2) = 2 * Ar (O) = 2 * 16 = 32.
Mr (O3) = 3 * Ar (O) = 3 * 16 = 48.
Mr (CH4) = Ar (C) 4 * Ar (H) = 12 4 * 1 = 16.
Mr (CO) = Ar (C) Ar (O) = 12 16 = 28.
Mr (NH3) = Ar (N) 3 * Ar (H) = 12 3 * 1 = 15.
Ответ: легче воздуха азот, метан, угарный газ и аммиак.
1. Приведите химические формулы пяти газообразных при обычных условиях веществ.
3. Какие методы собирания небольших количеств газов в лаборатории вы знаете? В чем различие этих методов?
4. Укажите, с помощью какого метода собирания газов в лабораторных условиях можно заполнить колбу каждым из указанных газов: кислород, азот, аммиак, углекислый газ.
5. Рассчитайте объем кислорода, содержащегося при обычных условиях в комнате, размеры которой составляют 4м x 4м x 3м.
6. Для каждого утверждения укажите, что означает термин кислород (химический элемент или простое вещество).
7. Из каких веществ образуется глюкоза в зелёных растениях в процессе фотосинтеза под воздействием солнечного света?
8. Какую роль на нашей планете играют зелёные растения? Почему следует оберегать леса от уничтожения и заботиться об их разведении?
9. Рассчитайте относительную молекулярную массу озона.
Комплексообразование
Благодаря своим электронодонорным свойствам молекулы NH3 могут входить в качестве лиганда в комплексные соединения. Так, введение избытка аммиака в растворы солей d-металлов приводит к образованию их аминокомплексов:
- CuSO4 4NH3 ⟶ [Cu(NH3)4]SO4.
- Ni(NO3)2 6NH3 ⟶ [Ni(NH3)6](NO3)2.
Комплексообразование обычно сопровождается изменением окраски раствора. Так, в первой реакции голубой цвет (CuSO4) переходит в тёмно-синий (окраска комплекса), а во второй реакции окраска изменяется из зелёной ( Ni(NO3)
2 ) в сине-фиолетовую. Наиболее прочные комплексы с NH3 образуют хром и кобальт в степени окисления 3.
Оксиды азота
В отличие от других химических элементов, азот образует большое число оксидов: N2O, NO, N2O3, NO2, N2O4 и N2O5, каждый из которых является кислотным. В таблице показали, какой оксид какой кислоте соответствует:
Оксид азота (I) N2O. Несолеобразующий оксид, представляет собой бесцветный газ с приятным запахом и сладковатым привкусом. По своей молярной массе тяжелее воздуха и растворим в воде. У этого оксида есть и другие названия, самое распространенное из них — закись азота.
Оксид азота (II) NO. Несолеобразующий оксид, который при нормальный условиях является бесцветным газом, плохо растворяется в воде и в больших концентрациях ядовит для человека.
Оксид азота (III) N2O3. Соединение очень неустойчивое и существует только при низких температурах. В твердом и жидком состоянии оксид азота (III) окрашен в ярко-синий цвет. При температуре выше 0 градусов разлагается до оксида азота (II) и оксида азота (IV).
Оксиды азота (IV) NO2 и N2O4. Твердый оксид азота (IV) бесцветный, так как состоит из молекул N2O4. При нагревании появляется коричневая окраска, которая усиливается с повышением температуры по мере увеличения NO2 в смеси. Эти оксиды хорошо растворимы в воде и взаимодействуют с ней.
Оксид азота (V) N2O5. Азотный ангидрид, который образуется в виде летучих бесцветных гигроскопичных кристаллов. Это крайне неустойчивое вещество, которое распадается в течение нескольких часов. При нагревании распадается со взрывом на оксид азота (IV) и газообразный кислород.
Первая доврачебная помощь при поражении аммиаком
Аммиак имеет резкий характерный запах «нашатыря», вызывает сильный кашель, удушье, его пары действуют сильно раздражающе на слизистые оболочки и кожные покровы, вызывают слезотечение, соприкосновение аммика с кожей вызывает обморожение.
3. Первая доврачебная помощь:
Состояние ухудшится:
При отсутствии дыхания:
Кожу, нос, рот, глаза промывать:
Транспортировать в лечебное учреждение в лежачем положении (в случаях тяжелой и средней степенях тяжести), после промывания слизистой глаз.
От аммиака защищает противогаз с другой коробкой, марки КД (серого цвета) и промышленные респираторы РПГ-67КД, РУ-60МКД. У них две сменных коробки (слева и справа). Они имеют ту же маркировку, что и противогазы. Надо помнить, что гражданские противогазы от аммиака не защищают. В крайнем случае, надо воспользоваться ватно-марлевой повязкой, смоченной водой или 5%-м раствором лимонной кислоты.
Защиту органов дыхания от синильной кислоты обеспечивают промышленные противогазы марок В (желтый цвет) и БКФ (защитный цвет), а также гражданские противогазы ГП-5, ГП-7 и детские.
Если в атмосфере присутствует сероводород, надо воспользоваться промышленными противогазами марок КД (серый цвет), В (желтый), БКФ (защитный) или респираторами РПГ-67КД и РУ-60МКД, защитят также гражданские противогазы ГП-5, ГП-7 и детские. Гражданские противогазы ГП-5, ГП-7 и детские ПДФ-2Д (Д), ПДФ-2Ш (Ш)
и ПДФ-7 надежно защищают от таких АХОВ, как хлор, сероводород, сернистый газ, соляная кислота, тетраэтилсвинец, этилмеркаптан, фенол, фурфурол. Для расширения возможностей гражданских противогазов по АХОВ к ним разработан дополнительный патрон ДПГ-3.
В комплекте с ДПГ-3 вышеуказанные противогазы обеспечивают надежную защиту от аммиака, диметиламина, хлора, сероводорода, соляной кислоты, этилмеркаптана, нитробензола, фенола, фурфурола, тетраэтилсвинца. Можно привести такой пример. Если от хлора при концентрации 5 мг/л гражданские и детские противогазы защищают в течение 40 мин., то с ДГП-3 — 100 мин. От аммиака гражданские и детские противогазы не защищают вообще, то с ДПГ-3 — 60 мин.
Для защиты от АХОВ в очаге аварии используются в основном средства индивидуальной защиты кожи (СИЗК) изолирующего типа. К ним относят костюм изолирующий химический (КИХ-4, КИХ-5). Он предназначен для защиты бойцов газоспасательных отрядов, аварийно-спасательных формирований и войск ГО при выполнении работ в условиях воздействия высоких концентраций газообразных АХОВ.
Применяется также комплект защитный аварийный (КЗА). Кроме того, защитный изолирующий комплект с вентилируемым под костюмным пространством Ч-20.
Нельзя забывать и о таких средствах защиты кожи, как комплект фильтрующей защитной одежды ФЗО-МП, защитная фильтрующая одежда ЗФО-58, общевойсковой защитный комплект ОЗК.
Для населения рекомендуются подручные средства защиты кожи в комплекте с противогазами. Это могут быть обычные непромокаемые накидки и плащи, а также пальто из плотного толстого материала, ватные куртки. Для ног — резиновые сапоги, боты, калоши. Для рук — все виды резиновых и кожаных перчаток и рукавицы.
В случае аварии с выбросом АХОВ убежища ГО обеспечивают надежную защиту. Во-первых, если неизвестен вид вещества или его концентрация слишком велика, можно перейти на полную изоляцию (третий режим), можно также какое-то время находиться в помещении с постоянным объемом воздуха.
Во-вторых, фильтропоглотители защитных сооружений препятствуют проникновению хлора, фосгена, сероводорода и многих других ядовитых веществ, обеспечивая безопасное пребывание людей. В крайнем случае, при распространении газов, которые тяжелее воздуха и стелются по земле, как хлор и сероводород, можно спасаться на верхних этажах зданий, плотно закрыв все щели в дверях, окнах, задраив вентиляционные отверстия.
Выходить из зоны заражения нужно в одну из сторон, перпендикулярную направлению ветра, ориентируясь на показания флюгера, развевание флага или любого другого куска материи, по наклону деревьев из открытой местности. В речевой информации об аварийной ситуации должно быть указано куда и по каким улицам, дорогам целесообразно выходить (выезжать), чтобы не попасть под зараженное облако. В таких случаях нужно использовать любой транспорт: автобусы, грузовые и легковые автомобили.
Время — решающий фактор. Свои дома и квартиры необходимо покинуть на время — 1-3 суток: пока не пройдет ядовитое облако и не будет локализован источник его образования.
К подобным чрезвычайным ситуациям население должно быть готово всегда. Для этого по месту работы, учебы и жительства проводятся занятия. В результате каждый человек обязан приобрести определенный объем знаний и навыков в применении средств и способов защиты, знать основные характеристики конкретных АХОВ, как уберечь продукты и воду от заражения, что надо сделать в квартире, чтобы предотвратить проникновение в нее ядовитых веществ.
Обычно на химически опасных объектах для этого разрабатывают специальные памятки, в которых указывают данные о свойствах АХОВ и признаках поражения, сведения о том, что должны знать и уметь люди, проживающие вблизи таких предприятий, как защитить себя, семью и близких.
ОБЩИЕ ПРИНЦИПЫ ОКАЗАНИЯ ПЕРВОЙ ПОМОЩИ
АХОВ могут попадать в организм человека через дыхательные пути, желудочно-кишечный тракт, кожные покровы и слизистые. При попадании в организм вызывают нарушения жизненно важных функций и создают опасность для жизни.
По скорости развития и характеру различают острые, подострые и хронические отравления.
Острыми называются отравления, которые возникают через несколько минут или несколько часов с момента поступления яда в организм. Общими принципами неотложной помощи при поражениях АХОВ являются:
— прекращение дальнейшего поступления яда в организм и удаление не всосавшегося;
— ускоренное выведение из организма всосавшихся ядовитых веществ;
— применение специфических противоядий (антидотов);
— патогенетическая и симптоматическая терапия (восстановление и поддержание жизненно важных функций).
При ингаляционном поступлении АХОВ (через дыхательные пути) — надевание противогаза, вынос или вывоз из зараженной зоны, при необходимости полоскание рта, санитарная обработка.
В случае попадания АХОВ на кожу — механическое удаление, использование специальных дегазирующих растворов или обмывание водой с мылом, при необходимости полная санитарная обработка. Немедленное промывание глаз водой в течение 10-15 минут. Если ядовитые вещества попали через рот — полоскание рта, промывание желудка, введение адсорбентов, очищение кишечника.
Перед промыванием желудка устраняются угрожающие жизни состояния, судороги, обеспечивается адекватная вентиляция легких, удаляются съемные зубные протезы. Пострадавшим, находящимся в коматозном состоянии, желудок промывают в положении лежа на левом боку.
Зондовое промывание желудка осуществляют 10-15 л воды комнатной температуры (18-20 0С) порциями по 0,5-1 л с помощью системы, состоящей из воронки, емкостью не менее 0,5 л, соединительной трубки, тройника с грушей и толстого желудочного зонда. Показателем правильности введение зонда является выделение желудочного содержимого из воронки, опущенной ниже уровня желудка.
Промывание осуществляется по принципу сифона. В момент заполнения водой воронка на уровне желудка, затем поднимается на 30-60 см, при этом вода из воронки выливается в желудок. Затем воронка опускается ниже уровня желудка. Промывные воды, попавшие в воронку из желудка, сливаются в специально подготовленную для этого емкость и процедура повторяется.
В систему не должен попадать воздух. При нарушении проводимости зонда система пережимается выше тройника и проводится несколько резких сжатий резиновой груши. Желудок промывается до «чистой воды». После окончания промывания через зонд вводятся адсорбент (3-4 ст. ложки активированного угля в 200 мл воды), слабительное: масляное (150-200 мг вазелинового масла) или солевое(20-30 г сульфата натрия или сульфата магния в 100 мл воды).
Получение
Промышленный способ получения аммиака основан на прямом взаимодействии водорода и азота:
- N2 3H2 ⇄ 2NH3 91,84 кДж.
Это так называемый процесс Габера (немецкий физик, разработал физико-химические основы метода).
Реакция происходит с выделением тепла и понижением объёма. Следовательно, исходя из принципа Ле-Шателье, реакцию следует проводить при возможно низких температурах и при высоких давлениях — тогда равновесие будет смещено вправо. Однако скорость реакции при низких температурах ничтожно мала, а при высоких увеличивается скорость обратной реакции.
Проведение реакции при очень высоких давлениях требует создания специального, выдерживающего высокое давление оборудования, а значит, и больших капиталовложений. Кроме того, равновесие реакции даже при 700 °C устанавливается слишком медленно для практического её использования.
Выход аммиака (в объёмных процентах) за один проход катализатора при различных температурах и давлении имеет следующие значения:
100 ат | 300 ат | 1000 ат | 1500 ат | 2000 ат | 3500 ат | |
---|---|---|---|---|---|---|
400 °C | 25,12 | 47,00 | 79,82 | 88,54 | 93,07 | 97,73 |
450 °C | 16,43 | 35,82 | 69,69 | 84,07 | 89,83 | 97,18 |
500 °C | 10,61 | 26,44 | 57,47 | Нет данных | ||
550 °C | 6,82 | 19,13 | 41,16 |
Применение
В основном используется для производства азотных удобрений (нитрат и сульфат аммония, мочевина), взрывчатых веществ и полимеров, азотной кислоты, соды (по аммиачному методу) и других продуктов химической промышленности. Жидкий аммиак используют в качестве растворителя.
В холодильной технике используется в качестве холодильного агента (R717) (см. Аммиачная холодильная установка).
В медицине 10 % раствор аммиака, чаще называемый нашатырным спиртом, применяется при обморочных состояниях (для возбуждения дыхания), для стимуляции рвоты, а также наружно — невралгии, миозиты, укусах насекомых, для обработки рук хирурга. При неправильном применении может вызвать ожоги пищевода и желудка (в случае приёма неразведённого раствора), рефлекторную остановку дыхания (при вдыхании в высокой концентрации).
Применяют местно, ингаляционно и внутрь. Для возбуждения дыхания и выведения больного из обморочного состояния осторожно подносят небольшой кусок марли или ваты, смоченный нашатырным спиртом, к носу больного (на 0,5—1 с). Внутрь (только в разведении) для индукции рвоты.
Поскольку аммиак является слабым основанием, при взаимодействии с кислотами он их нейтрализует.
Физиологическое действие нашатырного спирта обусловлено резким запахом аммиака, который раздражает специфические рецепторы слизистой оболочки носа и способствует возбуждению дыхательного и сосудодвигательного центров мозга, вызывая учащение дыхания и повышение артериального давления.
Противоморозная добавка для сухих строительных растворов, относящаяся к ускорителям. Рекомендуемая дозировка — 2…8 % массы компонентов сухой смеси в зависимости от температуры применения. Аммиачная вода NH3 ⋅ H2O — продукт, представляющий собой газообразный аммиак NH3, растворённый в воде.
Производители аммиака
Производители аммиака в России
Компания | 2006, тыс. т | 2007, тыс. т |
---|---|---|
ОАО «Тольяттиазот» | 2 634 | 2 403,3 |
ОАО НАК «Азот» | 1 526 | 1 514,8 |
ОАО «Акрон» | 1 526 | 1 114,2 |
ОАО «Невинномысский азот», г. Невинномысск | 1 065 | 1 087,2 |
ОАО «Минудобрения» (г. Россошь) | 959 | 986,2 |
ОАО «АЗОТ» г. Кемерово | 854 | 957,3 |
ОАО «Азот» | 869 | 920,1 |
ОАО «ЗМУ КЧХК» | 956 | 881,1 |
ОАО Череповецкий «Азот» | 936,1 | 790,6 |
ЗАО «Куйбышевазот» | 506 | 570,4 |
ОАО «Газпром Нефтехим Салават» | 492 | 512,8 |
«Минеральные удобрения» (г. Пермь) | 437 | 474,6 |
ОАО «Дорогобуж» | 444 | 473,9 |
ОАО «Воскресенские минеральные удобрения» | 175 | 205,3 |
ОАО «Щекиноазот» | 58 | 61,1 |
АО «Аммоний» (г. Менделеевск) | — | — |
Итого | 13 437,1 | 12 952,9 |
На долю России приходится около 9 % мирового выпуска аммиака. Россия — один из крупнейших мировых экспортёров аммиака. На экспорт поставляется около 25 % от общего объёма производства аммиака, что составляет около 16 % мирового экспорта.
По итогам 2022 года в России было произведено 14,8 млн тонн аммиака ( 2 % к 2022 году) (по данным Росстата). Производство аммиака в России сконцентрировано в Приволжском федеральном округе (46 % по итогам 2022 года). Далее следуют Центральный федеральный округ (23 %) и Северо-Западный федеральный округ (16 %).
Порядка 25 % российского производства аммиака отправляется на экспорт. Так, в 2022 году объём российского экспорта аммиака (по данным ФТС) составил составил 3,6 млн тонн ( 6 % к 2022 году) на сумму 1,6 млрд долл. США.
Ключевыми странами-получателями в 2022 году стали Украина, Финляндия и Литва.
Производители аммиака на Украине
Способы получения аммиака
В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поскольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.
Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:
2NH4Cl Са(OH)2 → CaCl2 2NH3 2Н2O
Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.
Видеоопытполучения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.
Еще один лабораторныйспособ получения аммиака – гидролиз нитридов.
Например, гидролиз нитрида кальция:
Ca3N2 6H2O → ЗСа(OH)2 2NH3
В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.
N2 3Н2 ⇄ 2NH3
Процесс проводят при температуре 500-550оС и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.
Более подробно про технологию производства аммиака можно прочитать здесь.
Физиологическое действие
Аммиак токсичен. По физиологическому действию на организм относится к группе веществ удушающего и нейротропного действия, способных при ингаляционном поражении вызвать токсический отёк лёгких и тяжёлое поражение нервной системы. Аммиак обладает как местным, так и резорбтивным действием.
Пары аммиака сильно раздражают слизистые оболочки глаз и органов дыхания, а также кожные покровы. Это человек и воспринимает как резкий запах. Пары аммиака вызывают обильное слезотечение, боль в глазах, химический ожог конъюнктивы и роговицы, потерю зрения, приступы кашля, покраснение и зуд кожи.
При соприкосновении сжиженного аммиака и его растворов с кожей возникает жжение, возможен химический ожог с пузырями, изъязвлениями. Кроме того, сжиженный аммиак при испарении поглощает тепло, и при соприкосновении с кожей возникает обморожение различной степени. Запах аммиака ощущается при концентрации 37 мг/м³.
Предельно допустимая концентрация в воздухе рабочей зоны производственного помещения (ПДКр.з.) составляет 20 мг/м³. В атмосферном воздухе населённых пунктов и в жилых помещениях среднесуточная концентрация аммиака (ПДКс.с.) не должна превышать 0,04 мг/м³.
Раздражение зева проявляется при содержании аммиака в воздухе 280 мг/м³, глаз — 490 мг/м³. При действии в очень высоких концентрациях аммиак вызывает поражение кожи: 7—14 г/м³ — эритематозный, 21 г/м³ и более — буллёзный дерматит. Токсический отёк лёгких развивается при воздействии аммиака в течение часа с концентрацией 1,5 г/м³. Кратковременное воздействие аммиака в концентрации 3,5 г/м³ и более быстро приводит к развитию общетоксических эффектов.
В мире максимальная концентрация аммиака в атмосфере (больше 1 мг/м³) наблюдается на Индо-Гангской равнине, в Центральной долине США и в Туркестанской (ранее — Южно-Казахстанской) области Казахстана.
Физические свойства аммиака:
Наименование параметра: | Значение: |
Цвет | без цвета |
Запах | с резким характерным запахом (запах «нашатырного спирта») |
Вкус | едкий |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность жидкости (при температуре кипения и атмосферном давлении 1 атм.), кг/м3 | 682,8 |
Плотность газа (при температуре кипения и атмосферном давлении 1 атм.), кг/м3 | 0,8886 |
Плотность (при 15 °C и атмосферном давлении 1 атм.), кг/м3 | 0,73 |
Плотность (при 25 °C и атмосферном давлении 100 кПа ≈ 1 атм.), кг/м3 | 0,7723 |
Температура плавления, °C | -77,73 |
Температура кипения, °C | -33,34 |
Критическая температура*, °C | 132,4 |
Критическое давление, МПа | 11,32 |
Критический удельный объем, м3/кг | 0,00426 |
Коэффициент теплопроводности газа (при 0 °C и атмосферном давлении 1 атм.), Вт/(м·К) | 0,026 |
Температура самовоспламенения, °C | 651 ± 1 |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | от 14,5 (15,0) до 33,6 |
Взрывоопасные концентрации смеси газа с кислородом, % объёмных | от 13,5 до 82 |
Удельная теплота сгорания, МДж/кг | 20,5 |
Температура пламени, °C | 700 |
Константа диссоциации кислоты | 9,21 ± 0,01 |
Молярная масса, г/моль | 17,0304 |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Химические свойства
- NH3 H ⟶ NH4 .
- NH3 H2O ⟶ NH4 OH− , Ko=1,8⋅10−5.
- NH3 HNO3 ⟶ NH4NO3.
- 2NH3 2K ⟶ 2KNH2 H2.
Амиды, имиды и нитриды ряда металлов образуются в результате некоторых реакций в среде жидкого аммиака. Нитриды можно получить нагреванием металлов в атмосфере азота.
Амиды металлов являются аналогами гидроксидов. Эта аналогия усиливается тем, что ионы OH− и NH2−, а также молекулы H2O и NH3 изоэлектронны.
- NaNH2 H2O ⟶ NaOH NH3.
и в спиртах:
- KNH2 C2H5OH ⟶ C2H5OK NH3.
Подобно водным растворам щелочей, аммиачные растворы амидов хорошо проводят электрический ток, что обусловлено диссоциацией:
- KNH2 ⇄ K NH2− .
Фенолфталеин в этих растворах окрашивается в малиновый цвет, при добавлении кислот происходит их нейтрализация. Растворимость амидов изменяется в такой же последовательности, что и растворимость гидроксидов: LiNH2 — нерастворим, NaNH2 — малорастворим, KNH2, RbNH2 и CsNH2 — хорошо растворимы.
- 2NH3 →1200—1300∘C N2 3H2 (реакция обратима),
- 4NH3 3O2 ⟶ 2N2 6H2O (без катализатора, при повышенной температуре),
- 4NH3 5O2 ⟶ 4NO 6H2O (в присутствии катализатора, при повышенной температуре).
На восстановительной способности NH3 основано применение нашатыря NH4Cl для очистки поверхности металла от оксидов при их пайке:
- 3CuO 2NH4Cl ⟶ 3Cu 3H2O 2HCl N2.
Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:
- 2NH3 NaOCl ⟶ N2H4 NaCl H2O.
- NH3 CH3Cl ⟶ [CH3NH3]Cl (гидрохлорид метиламмония).
- 2CH4 2NH3 3O2 ⟶ 2HCN 6H2O,
- Cu(NO3)2 4NH3 ⟶ [Cu(NH3)4](NO3)2,
- Cu3(PO4)2 12NH3 ⟶ [Cu(NH3)4]3(PO4)2,
- Cu(CH3COO)2 4NH3 ⟶ [Cu(NH3)4](CH3COO)2,
- AgNO3 2NH3 ⟶ [Ag(NH3)2]NO3.
Химические свойства азота
Азот химически малоактивен из-за наличия все той же тройной связи. Она же обуславливает малую термическую устойчивость соединений азота при нагревании. В химических реакциях азот может проявлять себя и как окислитель, и как восстановитель благодаря широкому спектру возможных степеней окисления.
Как восстановитель азот реагирует:
с фтором
N2 F2 = 2NF3с кислородом
N2 O2 = 2NO
Эти реакции проходят при температуре выше 1000 градусов Цельсия либо в электрическом заряде.
Как окислитель азот реагирует:
с металлами
N2 6Li = 2Li3Nазот реагирует при обычных условиях только с литием, а с щелочноземельными металлами — только при нагревании;
с водородом
N2 3H2 = 2NH3реакция протекает обратимо в присутствии металлического железа в качестве катализатора.
Рассмотрим способы получения азота. В промышленности его получают фракционной перегонкой жидкого воздуха, а вот в лаборатории азот получают иначе. Вот лишь некоторые способы:
реакция взаимодействия хлорида аммония и нитрита натрия
NaNO2 NH4Cl = N2 NaCl 2H2Oразложение некоторых солей аммония (на примере нитрита аммония)
NH4NO2 = N2 2H2O
Азот — основной компонент любого белка в организме человека. Давайте рассмотрим способы получения исходных компонентов для синтеза собственных белков.
Химические свойства аммиака
1.В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:
:NH3 H2O ⇄ NH4 OH–
Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.
Видеоопытрастворения аммиака в воде можно посмотреть здесь.
2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.
Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):
NH3 H2SO4 → NH4HSO4
2NH3 H2SO4 → (NH4)2SO4
Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:
NH3 H2O CO2 → NH4HCO3
2NH3 H2O CO2 → (NH4)2CO3
Видеоопытвзаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.
В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.
NH3 HCl → NH4Cl
Видеоопытвзаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.
3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.
Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):
FeSO4 2NH3 2H2O → Fe(OH)2 (NH4)2SO4
4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – аминокомплексы.
Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):
4NH3 CuCl2 → [Cu(NH3)4]Cl2
Гидроксид меди (II) растворяется в избытке аммиака:
4NH3 Cu(OH)2 → [Cu(NH3)4](OH)2
5.Аммиак горит на воздухе, образуя азот и воду:
4NH3 3O2 → 2N2 6H2O
Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:
4NH3 5O2 → 4NO 6H2O
6. За счет атомов водорода в степени окисления 1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.
Например, жидкий аммиак реагирует с натрием с образованием амида натрия:
2NH3 2Na → 2NaNH2 H2
Также возможно образование Na2NH, Na3N.
При взаимодействии аммиака с алюминием образуется нитрид алюминия:
2NH3 2Al → 2AlN 3H2
7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.
Например, аммиак окисляется хлором до молекулярного азота:
2NH3 3Cl2 → N2 6HCl
Пероксид водорода также окисляет аммиак до азота:
2NH3 3H2O2 → N2 6H2O
Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.
Например, оксид меди (II) окисляет аммиак:
2NH3 3CuO → 3Cu N2 3H2O