Чему равна степень окисления кислорода? Валентность и степень окисления кислорода

Чему равна степень окисления кислорода? Валентность и степень окисления кислорода Кислород
Содержание
  1. Галогены*
  2. Биологическая роль кислорода
  3. В медицине
  4. В металлургии
  5. В пищевой промышленности
  6. В сельском хозяйстве
  7. В химической промышленности
  8. Валентность
  9. Изотопы
  10. История открытия
  11. Кислород – мощный окислитель, без которого невозможно существование
  12. Кислород – особенности строения молекулы
  13. Кислород – простое вещество o2
  14. Нахождение в природе
  15. Онлайн урок: кислород по предмету химия 8 класс |
  16. Перегонка жидкого воздуха
  17. Понятие степень окисления химических элементов
  18. Применение кислорода
  19. Применение кислорода и его соединений в промышленности
  20. Происхождение названия
  21. Разложение кислородсодержащих веществ
  22. Ракетное топливо
  23. Реакция перекисных соединений с углекислым газом
  24. Сварка и резка металлов
  25. Степени окисления элементов — урок. химия, 8 класс.
  26. Степень окисления
  27. Таблица степеней окисления химических элементов. максимальная и минимальная степень окисления. возможные степени окисления химических элементов. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
  28. Таблица степени окисления химических элементов
  29. Токсические производные кислорода
  30. Токсичность кислорода
  31. Физические свойства
  32. Фториды кислорода
  33. Характеристика элемента кислорода
  34. Химические свойства кислорода
  35. Электролиз водных растворов

Галогены*

* Для фтора только 0 и -1; At также является галогеном, но его не рассматриваем, так как в природе его практически нет.

Биологическая роль кислорода

Большинство живых существ (аэробы) дышат кислородом. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях.

В медицине

Основная статья: Кислородная терапия

Медицинский кислород хранится в металлических газовых баллонах высокого давления голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Крупные медицинские учреждения могут использовать не сжатый кислород в баллонах, а сжиженный в сосуде Дьюара большой ёмкости. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

В пищевой промышленности


В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

В сельском хозяйстве

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, — окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), диоксид серы в триоксид серы, аммиака в оксиды азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

Валентность

Валентность (лат. valere — иметь значение) — мера «соединительной способности» химического элемента, равная числу индивидуальных
химических связей, которые может образовать один атом.


Определяют валентность по числу связей, которые один атом образует с другими. Для примера рассмотрим две молекулы

Для определения валентности нужно хорошо представлять графические формулы веществ. В этой статье вы увидите множество формул. Сообщаю
вам также о химических элементах с постоянной валентностью, знать которые весьма полезно.

В электронной теории считается, что валентность связи определяется числом неспаренных (валентных) электронов в основном или возбужденном
состоянии. Мы касались с вами темы валентных электронов и возбужденного состояния атома. На примере фосфора объединим эти две темы для
полного понимания.


Подавляющее большинство химических элементов обладает непостоянным значением валентности. Переменная валентность характерна для меди,
железа, фосфора, хрома, серы.

Ниже вы увидите элементы с переменной валентностью и их соединения. Заметьте, определить их непостоянную валентность нам помогают другие
элементы — с постоянной валентностью.

Запомните, что у некоторых простых веществ валентность принимает значения: III — у азота, II — кислорода. Подведем итог полученным знаниям,
написав графические формулы азота, кислорода, углекислого и угарного газов, карбоната натрия, фосфата лития, сульфата железа (II) и ацетата калия.

Как вы заметили, валентности обозначаются римскими цифрами: I, II, III и т.д. На представленных формулах валентности веществ равны:

  • N — III
  • O — II
  • H, Na, K, Li — I
  • S — VI
  • C — III (в угарном газе CO, так как одна связь образована по донорно-акцепторному механизму), IV (в углекислом газе CO2 и карбонате натрия Na2CO3)
  • Fe — II

Изотопы

Основная статья: Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16O, 17O и 18O, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16O связано с тем, что ядро атома 16O состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12O до 28O. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15O с периодом полураспада ~120 секунд. Наиболее краткоживущий изотоп 12O имеет период полураспада 5,8⋅10−22 секунд.

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Кислород – мощный окислитель, без которого невозможно существование

Выше много было написано о том, какие кислород проявляет степени окисления при вступлении в реакцию с различными соединениями и элементами, какие виды соединений кислорода существуют, какие виды опасны для жизни, а какие нет. Одно может остаться непонятным – как при всей своей токсичности и высоком уровне окисления кислород является одним из элементов, без которых невозможна жизнь на Земле?

Дело в том, что наша планета является очень сбалансированным организмом, который приспособился именно к тем веществам, которые содержатся в атмосферном слое. Она участвует в круговороте, который выглядит следующим образом: человек и все остальные животные потребляют кислород и вырабатывают углекислый газ, а растения в подавляющем большинстве потребляют углекислый газ и вырабатывают кислород.

Кислород – особенности строения молекулы

Данный химический элемент являет собой бесцветный газ, не имеющий запаха и вкуса. Химическая формула – О2. Химики называют обычный двухатомный кислород либо «атмосферный кислород», либо «дикислород».

Молекула вещества состоит из двух связанных атомов кислорода. Существует также молекулы, состоящие из трех атомов – О

3

. Данное вещество называется озон, более подробно о нем будет написано ниже. Молекула с двумя атомами имеет степень окисления кислорода -2, так как в ней есть два неспаренных способных образовывать ковалентную связь электрона. Энергия, которая выделяется при разложении (диссоциации) молекулы кислорода на атомы, равна 493,57 кДж/моль. Это довольно большое значение.

Кислород – простое вещество o2

Кислород является молекулярным веществом, молекула двухатомна. В молекуле кислорода связь ковалентная неполярная.

При обычных условиях кислoрoд – газ без цвета и запаха, тяжелее воздуха, плохо растворим в воде (несколько лучше, чем азот). В жидком состоянии кислород светло-голубого, в твёрдом – синего цвета.

Кислород является хорошим окислителем. Реагирует практически со всеми простыми веществами (кроме инертных газов, галогенов, благородных металлов). Так, например, киcлород окисляет металлы:

O2 2Zn = 2ZnO3O2 4Al = 2Al2O3O2 2Cu = 2CuO2O2 3Fe = Fe3O4

Кислорoд является также окислителем многих неметаллов. В некоторых случаях, для того чтобы началась реакция, требуется нагревание:

O2 C = CO2O2 S = SO25O2 4Р = 2Р2O5O2 2Н2 = 2Н2O

Кислoрод реагирует с азотом в электрической дуге (реакция обратима, идёт с небольшим выходом NO):

В кислороде сгорают многие горючие вещества, практически все органические вещества:

2O2 СН4 = СO2 2Н202Н2S 3O2 = 2SO2 2Н20

Кислoрoд окисляет многие сложные вещества – как неорганические, так и органические:

O2 4Fe(OH)2 2Н20 = 4Fe(OH)3O2 2СН3СНО = СН3СООН.

В промышленности кислород получают перегонкой воздуха. Способ основан на том, что у азота и кислорода разные температуры кипения. В лаборатории киcлорoд получают:

а) электролизом воды:Чему равна степень окисления кислорода? Валентность и степень окисления кислородаЧему равна степень окисления кислорода? Валентность и степень окисления кислородаЧему равна степень окисления кислорода? Валентность и степень окисления кислородаЧему равна степень окисления кислорода? Валентность и степень окисления кислородаЧему равна степень окисления кислорода? Валентность и степень окисления кислородаЧему равна степень окисления кислорода? Валентность и степень окисления кислородаЧему равна степень окисления кислорода? Валентность и степень окисления кислорода

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Онлайн урок: кислород по предмету химия 8 класс |

Кислород – самый распространенный на Земле химический элемент:

земная кора содержит 47% кислорода

мировой океан состоит из кислорода на 85%

Кроме этого, кислород – основной участник обмена веществ в живых организмах – дыхания и фотосинтеза.

В таблице приведены основные сведения о кислороде.

Химический элемент

Простое вещество

Название «Oxygenium» произошло от двух слов, в переводе «рождающий кислоты»

Химический знак – О

Атомный номер – 8

Расположение в периодической системе – 2 период, VI группа

Типичный неметалл (сильный окислитель)

Атомная масса – 16 а. е. м.

Валентность – 2

Степени окисления –   –2; 0; 1; 2

Химическая формула – O2

Молекулярная масса – 32 а. е. м.

Бесцветный газ без запаха; светло-голубая жидкость; синие кристаллы

Температура кипения –   –183 °С

Температура плавления –   –218 °С

В жидком состоянии кислород имеет голубой цвет, поэтому на всех формулах мы его будем обозначать голубым!

кислород

Изучением кислорода занимались несколько учёных примерно в одно и то же время.

Официально первооткрывателем кислорода считается англичанин Джозеф Пристли (1774 год).

Однако установлен факт, что в свое время Леонардо да Винчи изучал химию кислорода, не подозревая тогда, что он является элементом.

Название «кислород» в русский язык ввёл Михаил Ломоносов, который также ввёл в употребление термин «кислота», который в те времена обозначал оксид – соединение элемента с кислородом.

Поэтому истинное значение названия «кислород» переводится как «рождающий оксиды». Некоторое время в России кислород называли «кислотвор».

Химический элемент кислород образует два простых вещества: кислород (O2) и озон (O3).

Кислород активно участвует в обмене веществ, именно ему обязана наша планета возникновением на ней жизни.

Атмосфера содержит 21 % кислорода.

Считается, что несколько сотен миллионов лет назад концентрация кислорода в атмосфере была почти в 2 раза выше – около 40%.

Количество кислорода в воздухе ниже 8% является угрозой для жизни человека.

В отличие от кислорода, озон даже в газообразном состоянии имеет голубой цвет, в жидком – насыщенный фиолетовый, в твёрдом – почти чёрный.

Озон  (O3) образуется из кислорода при воздействии ионизирующих излучений: радиации или жестких ультрафиолетовых лучей (это свойство кислорода было открыто в 1899 году учеными Пьером и Марией Кюри).

Он образуется в атмосфере под воздействием разрядов молнии, а также при работе бытовой техники, например, лазерных принтеров.

При этом вы можете чувствовать характерный запах – это и есть запах озона.

Слово «озон» с греческого языка так и переводится: «пахну».

Озон также способен в некоторой степени задерживать ультрафиолетовые лучи. Это его свойство является одним из факторов существования жизни на Земле.

 Кислород и озон являются парамагнетиками – это значит, что они притягиваются к магниту.

Это заметно при проведении опытов с жидкими кислородом и озоном.

Перегонка жидкого воздуха

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Понятие степень окисления химических элементов

Она принимает как положительные, так и отрицательные значения. Чтобы указать степень окисления элемента в соединении нужно поставить сверху над его символом арабскую цифру с соответствующим знаком (« » или «-»).

Следует помнить, что степень окисления — величина, не имеющая физического смысла, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Применение кислорода

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

Применение кислорода и его соединений в промышленности

Благодаря тому, что в свое время ученые узнали, какая степень окисления у кислорода при взаимодействии с другими элементами, он и его соединения получили широкое применение в промышленности. Особенно после того, как в середине двадцатого века были изобретены турбодетандеры – агрегаты, способные преобразовывать потенциальную энергию кислорода в механическую.

Так как кислород — чрезвычайно горючее вещество, то его применяют во всех отраслях промышленности, где необходимо использование огня и тепла. При резке и сварке металлов также используются баллоны со сжатым кислородом для усиления аппарата газопламенной сварки. Широко применение кислорода в сталелитейной промышленности, где с помощью сжатого O

2

поддерживается высокая температура в домнах. Максимальная степень окисления кислорода равна -2. Эта его характеристика активно используется для изготовления оксидов с целью их дальнейшего горения и выделения тепловой энергии. Жидкий кислород, озон и другие соединения, содержащие большое количество O

2,

используют как окислители ракетного топлива. Окисленные кислородом некоторые органические соединения применяют в качестве взрывчатки.

В химической промышленности кислород используется как окислитель углеводородов в кислотосодержащих соединениях, таких как спирты, кислоты и т. д. В медицине используется при пониженном давлении для лечения больных с проблемами с легкими, для поддержания жизнедеятельности организма.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (l’oxygène), предложенного А.

Лавуазье (греческое όξύγενναω от ὀξύς — «кислый» и γενναω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим окислы, именуемые по современной международной номенклатуре оксидами.

Разложение кислородсодержащих веществ

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

 2KMnO4 → K2MnO4 MnO2 O2

Используют также реакцию каталитического разложения пероксида водорода H2O2 в присутствии оксида марганца (IV):

 2H2O2MnO2   2H2O O2

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

 2KClO3 → 2KCl 3O2

Разложение оксида ртути (II) (при t = 100 °C) было первым методом синтеза кислорода:

 2HgO →100oC   2Hg O2

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

Реакция перекисных соединений с углекислым газом

На подводных лодках и орбитальных станциях обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

 2Na2O2 2CO2 → 2Na2CO3 O2

Для соблюдения баланса объёмов поглощённого углекислого газа и выделившегося кислорода, к нему добавляют надпероксид калия. В космических кораблях для уменьшения веса иногда используется пероксид лития.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Степени окисления элементов — урок. химия, 8 класс.

Значение степени окисления указывают над знаком химического элемента:
У металлов (IIA) группы степень окисления всегда равна ( 2):
Степень окисления алюминия — ( 3):
Металлы побочных подгрупп проявляют переменные степени окисления:
У самого электроотрицательного из неметаллов фтора степень окисления постоянная и равна (–1):
Кислород почти всегда имеет степень окисления (–2):
Исключения — фторид кислорода и пероксиды:
В большинстве соединений степень окисления водорода ( 1), но в соединениях с металлами она равна (–1):

Степень окисления

Степенью окисления (СО) называют условный показатель, который характеризует заряд атома в соединении и его поведение в ОВР (окислительно-восстановительной
реакции). В простых веществах СО всегда равна нулю, в сложных — ее определяют исходя из постоянных степеней окисления у некоторых элементов.

Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны,
образующие связи, перешли к более электроотрицательному элементу.

Определяя степень окисления, одним элементам мы приписываем условный заряд » «, а другим «-«. Это связано с электроотрицательностью —
способностью атома притягивать к себе электроны. Знак » » означает недостаток электронов, а «-» — их избыток. Повторюсь, СО — условное
понятие.


Сумма всех степеней окисления в молекуле равна нулю — это важно помнить для самопроверки.

Кто более электроотрицательный, тот сильнее притягивает к себе электроны и «уходит в минус». Кто отдает свои электроны и испытывает их недостаток —
получает знак » «.

Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2,
KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.

Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией 🙂 Однако по мере изучения химии, точное знание
степеней окисления должно заменить даже самую развитую интуицию 😉


Особо хочу выделить тему ионов. Ион — атом, или группа атомов, которые за счет потери или приобретения одного или нескольких
электронов приобрел(и) положительный или отрицательный заряд.

Определяя СО атомов в ионе, не следует стремиться привести общий заряд иона к «0», как в молекуле. Ионы даны в таблице растворимости, они имеют
разные заряды — к такому заряду и нужно в сумме привести ион. Объясню на примере.

Таблица степеней окисления химических элементов. максимальная и минимальная степень окисления. возможные степени окисления химических элементов. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)


Раздел недели: Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.
Межфланцевые прокладки. Герметики. Уплотнительные материалы

Таблица степени окисления химических элементов

Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.

Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N2, H2, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na 1I-1, Mg 2Cl-12, Al 3F-13, Zr 4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно ( 1) и ( 2).

Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера – (-2), 0, ( 2), ( 4), ( 6) и др.).

Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

1

Водород / Hydrogen

H

( 1), (-1)

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

( 1)

4

Бериллий / Beryllium

Be

( 2)

5

Бор / Boron

B

(-1), 0, ( 1), ( 2), ( 3)

6

Углерод / Carbon

C

(-4), (-3), (-2), (-1), 0, ( 2), ( 4)

7

Азот / Nitrogen

N

(-3), (-2), (-1), 0, ( 1), ( 2), ( 3), ( 4), ( 5)

8

Кислород / Oxygen

O

(-2), (-1), 0, ( 1), ( 2)

9

Фтор / Fluorine

F

(-1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

( 1)

12

Магний / Magnesium

Mg

( 2)

13

Алюминий / Aluminum

Al

( 3)

14

Кремний / Silicon

Si

(-4), 0, ( 2), ( 4)

15

Фосфор / Phosphorus

P

(-3), 0, ( 3), ( 5)

16

Сера / Sulfur

S

(-2), 0, ( 4), ( 6)

17

Хлор / Chlorine

Cl

(-1), 0, ( 1), ( 3), ( 5), ( 7), редко ( 2) и ( 4)

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

( 1)

20

Кальций / Calcium

Ca

( 2)

21

Скандий / Scandium

Sc

( 3)

22

Титан / Titanium

Ti

( 2), ( 3), ( 4)

23

Ванадий / Vanadium

V

( 2), ( 3), ( 4), ( 5)

24

Хром / Chromium

Cr

( 2), ( 3), ( 6)

25

Марганец / Manganese

Mn

( 2), ( 3), ( 4), ( 6), ( 7)

26

Железо / Iron

Fe

( 2), ( 3), редко ( 4) и ( 6)

27

Кобальт / Cobalt

Co

( 2), ( 3), редко ( 4)

28

Никель / Nickel

Ni

( 2), редко ( 1), ( 3) и ( 4)

29

Медь / Copper

Cu

1, 2, редко ( 3)

30

Цинк / Zinc

Zn

( 2)

31

Галлий / Gallium

Ga

( 3), редко ( 2)

32

Германий / Germanium

Ge

(-4), ( 2), ( 4)

33

Мышьяк / Arsenic

As

(-3), ( 3), ( 5), редко ( 2)

34

Селен / Selenium

Se

(-2), ( 4), ( 6), редко ( 2)

35

Бром / Bromine

Br

(-1), ( 1), ( 5), редко ( 3), ( 4)

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

( 1)

38

Стронций / Strontium

Sr

( 2)

39

Иттрий / Yttrium

Y

( 3)

40

Цирконий / Zirconium

Zr

( 4), редко ( 2) и ( 3)

41

Ниобий / Niobium

Nb

( 3), ( 5), редко ( 2) и ( 4)

42

Молибден / Molybdenum

Mo

( 3), ( 6), редко ( 2), ( 3) и ( 5)

43

Технеций / Technetium

Tc

( 6)

44

Рутений / Ruthenium

Ru

( 3), ( 4), ( 8), редко ( 2), ( 6) и ( 7)

45

Родий / Rhodium

Rh

( 4), редко ( 2), ( 3) и ( 6)

46

Палладий / Palladium

Pd

( 2), ( 4), редко ( 6)

47

Серебро / Silver

Ag

( 1), редко ( 2) и ( 3)

48

Кадмий / Cadmium

Cd

( 2), редко ( 1)

49

Индий / Indium

In

( 3), редко ( 1) и ( 2)

50

Олово / Tin

Sn

( 2), ( 4)

51

Сурьма / Antimony

Sb

(-3), ( 3), ( 5), редко ( 4)

52

Теллур / Tellurium

Te

(-2), ( 4), ( 6), редко ( 2)

53

Иод / Iodine

I

(-1), ( 1), ( 5), ( 7), редко ( 3), ( 4)

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

( 1)

56

Барий / Barium

BA

( 2)

57

Лантан / Lanthanum

La

( 3)

58

Церий / Cerium

Ce

( 3), ( 4)

59

Празеодим / Praseodymium

Pr

( 3)

60

Неодим / Neodymium

Nd

( 3), ( 4)

61

Прометий / Promethium

Pm

( 3)

62

Самарий / Samarium

Sm

( 3), редко ( 2)

63

Европий / Europium

Eu

( 3), редко ( 2)

64

Гадолиний / Gadolinium

Gd

( 3)

65

Тербий / Terbium

Tb

( 3), ( 4)

66

Диспрозий / Dysprosium

Dy

( 3)

67

Гольмий / Holmium

Ho

( 3)

68

Эрбий / Erbium

Er

( 3)

69

Тулий / Thulium

Tm

( 3), редко ( 2)

70

Иттербий / Ytterbium

Ib

( 3), редко ( 2)

71

Лютеций / Lutetium

Lu

( 3)

72

Гафний / Hafnium

Hf

( 4)

73

Тантал / Tantalum

Ta

( 5), редко ( 3), ( 4)

74

Вольфрам / Tungsten

W

( 6), редко ( 2), ( 3), ( 4) и ( 5)

75

Рений / Rhenium

Re

( 2), ( 4), ( 6), ( 7), редко (-1), ( 1), ( 3), ( 5)

76

Осмий / Osmium

Os

( 3), ( 4), ( 6), ( 8), редко ( 2)

77

Иридий / Iridium

Ir

( 3), ( 4), ( 6), редко ( 1) и ( 2)

78

Платина / Platinum

Pt

( 2), ( 4), ( 6), редко ( 1) и ( 3)

79

Золото / Gold

Au

( 1), ( 3), редко ( 2)

80

Ртуть / Mercury

Hg

( 1), ( 2)

81

Талий / Thallium

Tl

( 1), ( 3), редко ( 2)

82

Свинец / Lead

Pb

( 2), ( 4)

83

Висмут / Bismuth

Bi

( 3), редко ( 3), ( 2), ( 4) и ( 5)

84

Полоний / Polonium

Po

( 2), ( 4), редко (-2) и ( 6)

85

Астат / Astatine

At

86

Радон / Radon

Ra

0

87

Франций / Francium

Fr

88

Радий / Radium

Ra

( 2)

89

Актиний / Actinium

Ac

( 3)

90

Торий / Thorium

Th

( 4)

91

Проактиний / Protactinium

Pa

( 5)

92

Уран / Uranium

U

( 3), ( 4), ( 6), редко ( 2) и ( 5)

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода.

Токсичность кислорода

Длительное вдыхание чистого кислорода может иметь опасные последствия для организма. Безопасно длительно дышать при обычном давлении смесями, содержащими до 60 % кислорода. Дыхание 90 % кислородом в течение 3 суток приводит к тахикардии, рвоте, пневмонии, судорогам.

Физические свойства

При нормальных условиях кислород это газ без цвета, вкуса и запаха. 1л его весит 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (темп. кипения −182,98 °C) это бледно-голубая жидкость.


Твердый кислород (темп. плавления −218,79 °C) — синие кристаллы. Известны шесть кристаллических фаз, из которых три существуют при давлении в 1 атм.:

α-О2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53° .β-О2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.

Ещё три фазы образуются при высоких давлениях:δ-О2 интервал температур до 300 К и давление 6-10 ГПа, оранжевые кристаллы;ε-О2 давление от 10 и до 96 ГПа, цвет кристаллов от темно красного до чёрного, моноклинная сингония;

Фториды кислорода

 2F2 2NaOH → 2NaF H2O OF2
 F2 O2 → O2F2

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3.

Характеристика элемента кислорода

Кислород О – элемент № 8, 2-й период, VIA группа. Электронная конфигурация атома кислорода 1s22s22p4.кислород

Валентные возможности кислорода – II и III (с учётом возможности образования связи по донорно–акцепторному механизму, например в ионе гидроксония Н3О ). Возможные степени окисления кислорода:

2 – в соединении со фтором OF2; 1 – в соединении со фтором О2F2;0 – в простых веществах O2 (кислород), O3 (озон);–1 – в пероксидах (Н2O2, Na2O2);–2 – во всех остальных соединениях кислорода (кроме супероксидов).

Кислород – самый распространённый элемент в земной коре. Кислороду присуща аллотропия, элемент кислород образует два простых вещества – киcлород O2 и озон O3.

Химические свойства кислорода

Кислород входит в VI группу главной подгруппы периодической системы химических элементов. На внешнем энергетическом уровне 6 электронов, то есть незавершенный. Поэтому он способен достраивать свой уровень, присоединяя электроны и проявляя окислительные свойства. Степень окисления характерна -2, исключение составляют пероксиды, в которых он проявляет степень окисления -1 и фторид кислорода (степень окисления у кислорода 2). Кислород никогда не проявляет положительных степеней окисления, что говорит о его высокой окислительной способности. Кислород является универсальным окислителем. Реакции горения так же относятся к реакциям окисления.

Химические свойства кислорода

Кислород способен образовывать две аллотропные модификации O2 и O3 (озон). Причем озон является более сильным окислителем, чем кислород.

Кислород характеризуется проявлением преимущественно окислительных свойств, в виде исключения и восстановительных.

Восстановительные свойства проявляет в реакции с фтором, которая протекает при высоких температурах. Продуктом реакции является фторид кислорода (II) – бесцветный ядовитый газ. 

F2 O2 → OF2

Окислительные свойства


Смотри также:

  • Номенклатура неорганических веществ
  • Характерные химические свойства простых веществ – металлов: щелочных, щелочноземельных, магния, алюминия; переходных металлов (меди, цинка, хрома, железа)
  • Характерные химические свойства простых веществ – неметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния
  • Характерные химические свойства оксидов: оснóвных, амфотерных, кислотных
  • Характерные химические свойства оснований и амфотерных гидроксидов
  • Характерные химические свойства кислот
  • Характерные химические свойства солей: средних, кислых, оснóвных; комплексных ( на примере соединений алюминия и цинка)
  • Взаимосвязь различных классов неорганических веществ

Электролиз водных растворов

К лабораторным способам получения кислорода относится метод электролиза разбавленных водных растворов щелочей, кислот и некоторых солей (сульфатов, нитратов щелочных металлов):

 2H2O →e− 2H2 O2
Оцените статью
Кислород
Добавить комментарий