Перекись водорода как лекарство: настоящее и мнимое –

Перекись водорода как лекарство: настоящее и мнимое – Кислород

Что первично для организма: o2 или co2?

Помните известный парадокс: что было раньше – курица или яйцо? Он не разрешим, если не привлекать во внимание процесс эволюции и образование новых видов. Но если привлечь, то у яйца оказывается некоторый приоритет, он древнее. Так, еще динозавры откладывали яйца, а птицы произошли от одной из ветвей динозавров. Получается, что яйцо древнее птицы и в этом, эволюционном, смысле первично…

В нашем случае проблема выбора — что первично (иными словами, что запускает процессы в человеческом организме): кислород или углекислый газ — решается следующим образом. Раньше первичным считался кислород — ведь он основной источник энергии, дающий толчок всем процессам в организме.

Накопление CO2 в организме в ходе расщепления в клетках жиров и белков дает сигнал мозгу о том, что углекислый газ нужно выводить из клеток — он «садится» на эритроциты и перемещается к альвеолам легких. На освободившиеся места в «поезде» эритроцитов «усаживается» O2 и разносится по организму.

Поэтому современный взгляд на процесс дыхания таков: сначала выдыхается углекислый газ, а потом вдыхается кислород. При этом вместе с углекислым газом выдыхаются и излишки кислорода. Для дыхания необходимы оба газа, попеременно «седлающие» эритроциты.

Среднее соотношение между количеством углекислого газа и кислорода в организме здорового человека примерно 3:1 (6% CO2 и 2% O2).

Взаимодействие «снаружи» и «изнутри». Итак, углекислый газ необходим для жизнедеятельности человека. Важно и поддержание определенного уровня CO2 в организме. А его недостаток и избыток вредны. Слишком высокое накопление CO2 возможно в плохо проветриваемых помещениях: при большом проценте (более 0,08–0,1%) его уровень в организме также растет (последствия этой ситуации обсуждались выше). Нехватка углекислого газа в крови (менее 4%) тоже опасна (см. рис. 4).

В каких случаях может возникнуть такая нехватка? Типичный пример — учащенное дыхание: слишком много CO2 выдыхается и мало остается в организме. При недостатке углекислого газа кислород прочно «прикреплен» к эритроцитам. И даже когда кислорода в крови много, он оказывается связанным и плохо поступает в ткани организма. Если в такой ситуации дышать еще чаще, то это только усугубит ситуацию.

Что делать? Движение, гимнастика, спорт на воздухе или в хорошо проветриваемом помещении — все это увеличивает содержание CO2. Капилляры расширяются и даже образуются новые сети капилляров, кровоток усиливается, кислород лучше отделяется от гемоглобина и поступает в клетки…

Приведем еще один пример важности более редкого дыхания. Стайерам во время бега рекомендуют в случае, когда уже не хватает сил, как можно дольше задержать дыхание для того, чтобы открылось «второе дыхание» и он мог бежать дальше.

Оказание первой помощи. Дыхание «рот в рот». При оказании первой доврачебной помощи человеку в случае исчезновения дыхания одним из действенных методов является искусственное дыхание методом «рот в рот» вместе с непрямым массажем сердца.

В рот пострадавшего через марлю или носовой платок спасатель должен выдыхать воздух с частотой 12–15 раз в минуту. Казалось бы, это бессмысленно. Ведь в начале статьи мы много раз повторяли, каков должен быть состав вдыхаемого воздуха (21% кислорода и 0,4% углекислого газа).

А тут выходит, что пострадавший вынужден принудительно получать воздух «на выдохе» (16% O2 и 4% CO2). Тем не менее, оказывается, что и в выдыхаемом воздухе еще есть остатки кислорода в концентрации, превышающей минимально допустимую (16% > 13–14%).

В этой ситуации имеется некоторая аналогия с поведением спасателя при остановке сердца: он должен повернуть пострадавшего на спину и нанести ему удар ребром руки по грудной клетке. Цель — сотрясение грудной клетки, что должно привести к запуску остановившегося сердца.

Так что роль CO2 при остановке дыхания несколько иная, чем при обычном, спокойном дыхании.

Способы увеличения концентрации выдыхаемого углекислого газа. Человек в повседневной жизни «в автоматическом режиме» делает примерно 15 циклов вдох-выдох в минуту (каждый цикл имеет длительность приблизительно 4 секунды). Обычное отношение длительности вдоха и выдоха 1 : 1,3.

Смысл основных дыхательных гимнастик заключается в повышении содержания в крови углекислого газа за счет задержки, ослабления, замедления или искусственного затруднения дыхания. При этом повышение концентрации CO2 (до определенного предела, около 8%) улучшает усвоение кислорода организмом человека.

Наиболее последовательной из современных методик является система Бутейко — поверхностное дыхание с задержкой. Она направлена на уменьшение потребления кислорода и насыщение организма углекислым газом. По этой системе усилием воли вдох занимает 2 секунды, выдох — 4 секунды, за которым следует 4-х секундная задержка дыхания. Всего цикл длится 10 секунд, укладываясь в 6 циклов в минуту.

В практике йоги правильным считается весьма продолжительный выдох с отношением длительности вдоха и выдоха 1 : 5. Утверждается, что йог в состоянии глубокой медитации может «обходиться» всего двумя-тремя циклами вдох-выдох в минуту. Первая реакция на это — не может быть!

И действительно, в этом что-то есть. Площадь кожи человека, покрытая 5 миллионами волосков, составляет 1,5–2 м2. А суммарная площадь 600 миллионов альвеол в легких — около 100 м2. Грубо получается, что на уровне 1–2% кожа может выполнять дыхательную функцию.

Активный кислород: друг или враг, или о пользе и вреде антиоксидантов

Статья на конкурс «био/мол/текст»: Долгое время активные формы кислорода считались вредными побочными продуктами обмена веществ. За последнее десятилетие, однако, учёные показали, что живые организмы не только могут использовать активный кислород в своих целях, но и целенаправленно его вырабатывают. Возникает вопрос: нужно ли бороться с активными формами кислорода с помощью антиоксидантов?

Вот уже много лет производители продуктов питания и косметики твердят о пользе для нашего здоровья антиоксидантов. В связи с этим в головах людей прочно укрепляется точка зрения, что эти чудодейственные вещества являются своего рода панацеей от многих болезней и даже предотвращают процесс старения. Однако недавние исследования показывают, что всё не так однозначно, как считалось ранее.

Со времён изобретения сине-зелёными бактериями кислородного фотосинтеза [1] мы живём в чрезвычайно агрессивной окислительной среде. Правда, сам по себе кислород не очень страшен для нас, живых организмов, поскольку, чтобы пошла реакция окисления, необходимо преодолеть высокий энергетический барьер (или, говоря другими словами, нас нужно было бы поджечь). Однако иногда в процессах неполного окисления кислород превращается в так называемые активные формы (АФК), и тогда эти молекулы становится поистине страшным окислителем, взаимодействуя с любой органикой, встретившейся на пути: белками, жирами, углеводами, нуклеиновыми кислотами… И в наших клетках ежесекундно вырабатываются тысячи таких молекул — как побочные продукты дыхания, реакций синтеза и распада биомолекул.

К счастью, в нашем организме предусмотрены системы защиты от нежелательного окисления. Существуют специальные ферменты, занимающиеся нейтрализацией активных форм кислорода и их восстановлением до воды. Окислительные повреждения белков и ДНК, которые ещё можно обратить, восстанавливаются специальными ферментами репарации, а молекулы, подвергнувшиеся необратимым изменениям, уничтожаются. Таким образом, наш организм наделён природными антиоксидантами и способен сам постоять за себя.

Но иногда антиоксидантные системы организма дают сбой, и тогда активные формы кислорода могут причинить ощутимый урон. Опасность заключается ещё и в том, что процесс накопления окислительных повреждений обладает положительной обратной связью: повреждения молекул, отвечающих за регуляцию выработки и деградации АФК, порождают ещё большее увеличение содержания АФК в клетке. Так, известно, что при старении, травмах и некоторых заболеваниях (например, болезнях Альцгеймера и Паркинсона) повышается уровень окислительных повреждений в мозге [2][3].

В свете сказанного понятно, почему врачи и фармацевты возлагают большие надежды на использование природных и синтетических антиоксидантов для лечения (или хотя бы облегчения протекания) болезней, сопровождающихся окислительными повреждениями тканей. И действительно, исследования на модельных животных показали, что использование антиоксидантов способствует смягчению симптомов некоторых заболеваний и даже может увеличивать среднюю продолжительность жизни. Так, в лаборатории академика В.П. Скулачёва были получены искусственные антиоксиданты, широко известные под названием «ионы Скулачёва» и способные встраиваться в мембраны митохондрий — одного из основных источников активных форм кислорода в клетке. С помощью этих антиоксидантов удалось обратить вспять некоторые вызванные старением нарушения у лабораторных животных [4].

И всё же, за последний десяток лет отношение учёных к активным формам кислорода кардинально изменилось. Всё началось с открытия в клетках иммунной системы фермента NADPH-оксидазы, единственная функция которого — осуществлять продукцию активных форм кислорода для борьбы с патогенными организмами. С его помощью макрофаги «поливают» нежелательных гостей токсичными молекулами супероксида, пероксида водорода, гипохлорита и др. в ходе так называемого «окислительного взрыва». Каково же было удивление учёных, когда этот фермент и ещё целых шесть его «родственников» (изоформ) были обнаружены практически во всех тканях организма!

Сейчас известно, что активные формы кислорода участвуют в регуляции многих процессов в клетке, влияя на скорость деления клеток и дифференцировку, а также на другие клеточные функции. Некоторая ирония заключается в том, что развитию «полезных» функций АФК способствовали свойства, следующие из его токсичности — высокая способность взаимодействовать с биомолекулами и наличие систем для его быстрого разрушения в клетке. Иными словами, активный кислород можно использовать как сигнальный маяк, быстро включая или выключая по необходимости. Таким образом, наш организм научился извлекать выгоду даже из такого, казалось бы, «вредного» побочного продукта, как активные формы кислорода.

Как же осуществляется такая регуляция? Для слаженной работы нашего организма клеткам необходимо обмениваться между собой информацией посредством гормонов, факторов роста и других специальных молекул. Эти вещества узнаются и связываются белками-рецепторами, о чём последние извещают клетку с помощью целого каскада ферментативных реакций. Особую роль в этих процессах играет осуществляемая специальными ферментами — киназами [5][6] — реакция фосфорилирования белков. Она заключается в том, что к некоторым аминокислотным остаткам белка — тирозину и серину — присоединяется фосфатная группа, что приводит к его активации или, наоборот, подавлению активности. Этому процессу противостоит реакция дефосфорилирования, осуществляемая ферментами-фосфатазами и вызывающая в точности обратное действие. Баланс этих двух реакций и определяет уровень активности регулируемого белка в клетке. Например, инсулин — гормон, отвечающий за регуляцию потребления глюкозы клетками, — связывается с инсулиновыми рецепторами, находящимися на поверхности практически всех клеток организма, что приводит к появлению тирозинкиназной активности рецептора. Это запускает цепочку ферментативных процессов, в результате которых на мембране клеток увеличивается число белков-переносчиков глюкозы, и потребление клеткой глюкозы увеличивается [7].

Оказалось, что активные формы кислорода способны обратимо окислять остатки цистеина в каталитических участках некоторых фосфатаз и подавлять их активность. Это приводит к смещению уровня фосфорилированности регулируемых ими белков, что, конечно, влияет на передаваемый клетке сигнал. Так, выделение активных форм кислорода было зафиксировано при связывании клеточными рецепторами инсулина, и было показано, что подавление их продукции добавлением антиоксидантов ослабляет действие гормона на клетку [7].

В многочисленных исследованиях было показано, что активные формы кислорода участвуют в синтезе некоторых соединений (например, тиреоидных гормонов), регуляции подвижности клеток соединительных тканей, роста сосудов и нервных окончаний и т.д.

Ещё один совсем недавно открытый эффект — участие АФК в регуляции процессов в мозге, лежащих в основе обучения и памяти. Как известно, основная функция нервных клеток — получать и передавать электрические сигналы посредством межклеточных контактов — синапсов. Именно здесь определяется, будет ли входящий с другого нейрона электрический сигнал передан дальше следующим нейронам, или же он пропадёт бесследно. При этом мозг — динамичная структура, причём в нём не только постоянно образуются новые и рассасываются ненужные клеточные контакты, но и проводимость самих синапсов может меняться [8]. Без этих процессов мы не смогли бы обучиться никаким навыкам или, например, запомнить сведения, приведённые в данной статье.

Так вот, на клеточных культурах, а потом и в исследованиях на модельных животных было показано, что активные формы кислорода не только влияют, но и необходимы для регулирования проводимости синапсов. Так, чрезмерная продукция антиоксидантных белков в мыши приводила к развитию когнитивных нарушений у этих животных [9].

* * *

Таким образом, за последние десятилетия активный кислород превратился в глазах учёных из опасного побочного продукта в важный компонент сигнальных путей клетки. В связи с этим и нам нужно пересмотреть свое отношение к антиоксидантам как к безусловно полезным веществам, которых чем больше — тем лучше. Антиоксидантов, получаемых с потреблением свежих фруктов и овощей, вполне достаточно для ежедневных нужд организма. А к активному использованию антиоксидантов в медицине надо относиться внимательно, имея в виду возможные побочные эффекты при чрезмерном подавлении продукции активных форм кислорода.

  1. Волонтер фотосинтеза;
  2. Marina S. Hernandes, Luiz R.G. Britto. (2022). NADPH Oxidase and Neurodegeneration. Current Neuropharmacology. 10, 321-327;
  3. Cynthia A. Massaad, Eric Klann. (2022). Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxidants & Redox Signaling. 14, 2022-2054;
  4. V. P. Skulachev. (2007). A biochemical approach to the problem of aging: “Megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry Moscow. 72, 1385-1396;
  5. Рецептор «нетрадиционной ориентации»;
  6. Mark A. Lemmon, Joseph Schlessinger. (2022). Cell Signaling by Receptor Tyrosine Kinases. Cell. 141, 1117-1134;
  7. Barry J. Goldstein, Kalyankar Mahadev, Xiangdong Wu, Li Zhu, Hiroyuki Motoshima. (2005). Role of Insulin-Induced Reactive Oxygen Species in the Insulin Signaling Pathway. Antioxidants & Redox Signaling. 7, 1021-1031;
  8. Элементы: «Какой же вклад протеинкиназа M-дзета вносит в формирование памяти?»;
  9. Dick Jaarsma, Elize D. Haasdijk, J.A.C. Grashorn, Richard Hawkins, Wim van Duijn, et. al.. (2000). Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1. Neurobiology of Disease. 7, 623-643;
  10. S. G. Rhee. (2006). CELL SIGNALING: H2O2, a Necessary Evil for Cell Signaling. Science. 312, 1882-1883.

Кислород атомарный

Кислород контактирует с отработанным раствором щелочи непосредственно в эжекторном смесителе. Интервал времени между образованием кислорода и контактированием его со щелочью должен быть не больше минуты. При большем интервале активность кислорода уменьшается вследствие превращения атомарного кислорода в молекулярный.[ …]

Атомарный кислород вновь взаимодействует с двухатомным кислородом [реакция (1.4)], возмещая О3. Таким образом, небольшого количества озона достаточно для поглощения квантов ультрафиолетового излучения и защиты от него биосферы.[ …]

Реакция с атомарным кислородом играет важную роль только в стратосфере, куда Э02 забрасывается в ходе эруптивных извержений вулканов. В стратосфере концентрации 0(аР) на два порядка выше, чем в тропосфере.[ …]

Образующийся атомарный кислород может вступать в самые разнообразные реакции, в том числе в реакцию образования озона, который способен быстро окислять N0 до N02.[ …]

Но если это так и если атомарный или молекулярный кислород воздуха поддерживает жизнь только до некоторого определенного срока, значит теория дыхания нуждается в ревизии. В свою очередь эта ревизия может привести к еще более глубоким последствиям — к пересмотру действия дыхательных ферментов под новым углом зрения.[ …]

Получающиеся в этом цикле атомарный кислород, озон и гидроксильный радикал инициируют окисление углеводородов.[ …]

Из оксида хлора под действием атомарного кислорода вновь образуется атом хлора (7.27).[ …]

Атмосфера состоит в основном из кислорода и азота (табл. 2.1). На высоте 110-120 км кислород почти весь становится атомарным. Предполагается, что выше 400-500 км и азот находится в атомарном состоянии. Кислородноазотный состав сохраняется примерно до высоты 400-600 км.[ …]

Выделяющийся при электролизе воды атомарный кислород (кислород в момент его образования) окисляет присутствующие в растворе отработанной щелочи меркаптаны1 натрия до дисульфидов. При этом одновременно регенерируется щелочь.[ …]

При этом образуется высокоактивный атомарный кислород О, который соединяется с молекулой кислорода (в присутствии третьего тела) с образованием озона [ см. реакцию (2)].[ …]

Остатки СН образуются с пиролизом, а атомарный кислород — в результате диссоциации молекул 02.[ …]

На высотах 30—50 км от поверхности Земли атомарный кислород взаимодействует с 02 с образованием озона.[ …]

Атмосфера Земли, помимо молекулярного и атомарного кислорода, содержит в незначительном количестве и озон, концентрация которого весьма непостоянна и меняется в зависимости от высоты и времени года. Больше всего озона содержится в области полюсов к концу полярной ночи на высоте 15-30 км с резким убыванием вверх и вниз. Озон возникает в результате фотохимического действия на кислород ультрафиолетовой солнечной радиации преимущественно на высотах 20-50 км. Двухатомные молекулы кислорода частично распадаются при этом на атомы и, присоединяясь к неразложенным молекулам, образуют трехатомные молекулы озона (полимерная, аллотропная форма кислорода 03). Следует особо отметить, что озон — одна из двух известных молекулярных форм аллотропных модификаций кислорода, обладающая высокой химической активностью; озон чрезвычайно токсичен (1 класс опасности). При повышенных концентрациях в воздухе озон действует на человека отравляюще, снижает сопротивляемость организма к бактериальным инфекциям. Токсичность озона резко повышается при одновременном воздействии па организм оксидов азота, формальдегида, перекиси водорода и некоторых других соединений.[ …]

Для оценки способности выделения в воде атомарного кислорода хлор, находящийся ,в соединении с каким-либо веществам ( в данном случае гипохлорит кальция), сравнивается с газообразным хлором. Отсюда появилось понятие «активный хлор» (а. х.), которое определяет не количественное содержание хлора (так называемый общий хлор) ¡в том или ином веществе, а сколько атомов кислорода этот хлор .выделяет.[ …]

В атмосферном воздухе всегда присутствует озон (атомарный кислород), концентрация которого у земной поверхности составляет в среднем 10 41 %.[ …]

Озон является продуктом соединения молекулярного кислорода с атомарным, образующимся под воздействием ультрафиолетовых солнечных лучей. Общее содержание озона в атмосфере невелико — 2,10%, но он отражает до 95% ультрафиолетовых лучей, что предохраняет живые организмы от их губительного действия. Задерживая до 20% инфракрасных излучений, достигающих Земли, озон повышает утепляющие действия атмосферы. На формирование озонового экрана влияет наличие в стратосфере хлора, оксидов азота, водорода, фтора, брома, метана, обеспечивающих фотохимические реакции разрушения озона.[ …]

Верхняя часть атмосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, а молекулярный азот, относительные концентрации которого сильно уменьшаются, все еще доминирует над атомарным.[ …]

Окислительное действие озона основано на выделении атомарного кислорода 03 = 0г 0- ВаЖное преимущество озонирования-отсутствие загрязнения воды дополнительными примесями. Действие озона эффективно снижает цветность природных вод и устраняет запахи.[ …]

Начиная с высоты 40 км, заметно увеличение содержания атомарного кислорода, а выше 120 — 150 км молекулы кислорода практически отсутствуют — весь кислород становится атомарным.[ …]

Хлорноватистая кислота, будучи нестойким соединением, разлагается с выделением атомарного кислорода, т. е.[ …]

Таким образом, обеззараживающий эффект хлорирования объясняли окисляющим действием атомарного кислорода, разрушающим вещество бактерий. Теперь установлено, что бактерицидный эффект в малой степени зависит от действия атомарного кислорода.[ …]

В то же время озон поглощает ультрафиолетовую радиацию, разлагаясь на молекулярный и атомарный кислород. Основная масса озона располагается на высотах 10-25 км с максимальной концентрацией на высотах 22-24 км. Озоновый слой (часто применяют термин «озоновый экран») имеет исключительно важное значение в сохранности жизни на Земле.[ …]

В магнитосфере, которая окружает Землю на высоте выше 800 км, наблюдается присутствие ионов атомарного кислорода (до 1000 км), ионов гелия (до 1500км) и ионов водорода — на высоте более 1500 км. Часть водорода (несколько тысяч тонн в год) может удаляться в космос. В свою очередь из космоса в атмосферу Земли поступают плазменные потоки, выбрасываемые Солнцем, и космическая пыль (примерно 2 г на 1 км2). Воздушный слой, окружающий Землю, служит передаточной средой, через которую на нее поступает солнечная радиация: радиоволны, инфракрасное, ультрафиолетовое, рентгеновское и гамма-излучение (рис. 1-3).[ …]

Определяющей в образовании NO считается реакция (3.4), скорость которой зависит от концентрации атомарного кислорода, в свою очередь зависящей от максимальной температуры в зоне горения.[ …]

Спектр излучения молнии состоит в основном из линий нейтральных и однократно ионизованных атомов кислорода и азота. Отметим, что атомарные линии не присущи спектру излучения воздуха, возбуждаемого высокочастотным разрядом. Обычно при этом такие линии в спектре излучения воздуха не наблюдаются.[ …]

На высоте около 130 км содержание 02 и О одинаково, а на высотах более 200 км присутствует практически только атомарный кислород.[ …]

Даже небольшие концентрации двуокиси азота могут обусловить образование относительно большого количества атомарного кислорода для образования озона или вступления в реакцию с органическими загрязнителями, в результате чего образуются вещества, которые могут раздражать глаза, повреждать растения на корню и понижать видимость. Озон, образующийся во время «смога», является причиной быстрого растрескивания резиновых изделий. Окисление сернистого ангидрида в серный ангидрид с последующим образованием аэрозоля серной кислоты в совокупности с имеющимся налицо дымом, пылью субмикронных размеров и парами еще в большей степени понижает видимость.[ …]

Вкратце можно заключить, что фотохимический смог начинается с фотодиссоциации двуокиси азота и одновременного образования атомарного кислорода. В отсутствие углеводородов двуокись азота восстанавливается почти так же быстро, как и распадается. В это время устанавливаются небольшие концентрации О, Оз, N0 и Ы20з. Как только в систему поступают органические пары, двуокись азота тут же начинает накапливаться, вероятно, в результате следующего процесса. Углеводороды реагируют с атомами кислорода с образованием свободных радикалов. Затем начинаются цепные реакции с участием молекулярного кислорода, что приводит к поглощению окиси азота. В результате двуокись азота образуется быстрее, чем фотодиссоциирует. В то же время сложные цепные реакции приводят к образованию других продуктов, которые оказывают раздражающее влияние на человека и растения.[ …]

Эффективность этой реакции возрастает по мере роста отношения концентраций 802/Ж)2, поскольку диоксид азота при фотолизе распадается с выделением атомарного кислорода. Кинетические расчеты показывают, что при концентрациях (N0 М02) и 302, равных 0,2 млн 1 (типичных для городского воздуха), скорость реакции между 80, и О будет приблизительно в 10 раз ниже скорости реакции между атомарным кислородом и оксидами азота.[ …]

Первая стадия состоит в термической диссоциации молекул органических веществ с образованием радикалов СН; на второй стадии радикалы окисляются атомарным кислородом с образованием ионов СНО , которые в результате протонного обмена с молекулами воды преобразуются в ионы Н30 . Следствием такого механизма является известная пропорциональность эффективности ионизации углеводородных молекул (т. е. ионизационного тока ПИД) числу атомов углерода, приносимых в пламя за единицу времени [5].[ …]

В воздухе всегда присутствует озон, концентрация которого у земной поверхности в среднем составляет 10-6%. Озон образуется в верхних слоях атмосферы из атомарного кислорода в результате фотохимической реакции под влиянием солнечной радиации, вызывающей диссоциацию молекул кислорода. Слой озона удивительно тонок. Если бы этот газ сосредоточить у поверхности Земли, то он образовал бы пленку лишь в 2—4 мм толщиной (минимум— в районе экватора, максимум — у полюсов). Однако и эта пленка надежно защищает нас, почти полностью поглощая опасные ультрафиолетовые лучи.[ …]

Обычное содержание оксидов азота в атмосферном воздухе: N02 — 1 мг/м3, N0 — менее 0,002 мг/м3, N02 — 0,02 мг/м3. Под воздействием солнечных лучей оксиды азота разлагаются с образованием атомарного кислорода и в присутствии углеводородов при соответствующих метеорологических условиях вызывают образование фотохимического тумана — смога.[ …]

Сложный механизм фотохимических реакций в загрязненном воздухе в общих чертах сводится к следующему [2, 3]. Двуокись азота, поглощая УФ-излучение Солнца, фотолизируется до окиси азота и атомарного кислорода, который, соединяясь с молекулярным кислородом воздуха, образует озон. Озон и атомарный кислород атакуют молекулы органических веществ (углеводородов), вызывая разрыв углеродных связей (в первую очередь двойных) с образованием свободных радикалов, перекисей, надкислот, альдегидов, кетонов и других соединений. Свободные радикалы окисляют окись азота в двуокись, при реакции которой с этими радикалами образуются пероксиацилнитраты (ПАН), а также, по-видимому, пероксибензоилнитраты.[ …]

Достаточно дискуссионным является вопрос о воздействии хлор-фторметанов (фреонов) на озон, но во всяком случае необходимо остановиться на возможных реакциях с участием этих соединений, озона, азота, атомарного кислорода и ультрафиолетового излучения в разных слоях атмосферы.[ …]

Известно, что более 99 % ультрафиолетового излучения Солнца поглощается слоем озона (03) на высоте в среднем 25 км от поверхности Земли. Озон образуется в стратосфере, где под действием ультрафиолетового излучения молекулы кислорода диссоциируют с образованием атомарного кислорода.[ …]

Аэробная атмосфера Земли обладает огромным окислительным потенциалом1”, определяющим скорости окисления не только циркулирующих в естественных биогеохимических циклах восстановленных соединений, но и антропогенных компонентов. При этом ключевая роль в таких процессах принадлежит не молекулярному кислороду, а различного рода кислородсодержащим частицам, присутствующим в ней в относительно небольших количествах. Такие частицы, к числу которых относятся озон, радикал гидроксила, атомарный кислород и некоторые другие молекулы и радикалы, образуются в реакциях, инициируемых солнечной радиацией, и называются фотооксидантами.[ …]

Далее газ поступает в абсорбер с насадкой, орошаемый сульфит-бисульфитным раствором, в который подается аммиак. Отработанный раствор из абсорбера и скруббера поступает в реактор с водяной рубашкой, куда добавляется аммиак для перевода бисульфита в сульфит аммония. В реакторе происходит окисление сульфита аммония атомарным кислородом в сульфат аммония.[ …]

В Германии разработан технологический процесс, в котором обработка отработанных масел серной кислотой заменена окислением их нагретым воздухом в специальных продувочных аппаратах. Представляют интерес установки, работающие в Германии и Италии, на которых переработка отработанных масел ведется в присутствии некоторых солей неорганических кислот (пербораты, персульфаты и перманганаты натрия и калия, хлорид цинка). Выделяемый в этих условиях атомарный кислород усиливает процессы полимеризации и окисления нежелательных компонентов, в результате чего они выпадают в осадок и удаляются механическим путем. При применении этой технологии значительно сокращаются потери полезных фракций, а получаемые масла обладают высоким качеством. Выход масел на этих установках в некоторых слу чях доходит до 95% 10°.[ …]

В утренние часы «пик» в воздухе накапливается большое количество отработанных газов, и к полудню образуется фотохимический туман. Во второй половине дня под действием усиливающегося нагрева инверсия ослабевает, смог поднимается вверх. Как уже говорилось, фотохимический туман возникает в загрязненном воздухе в результате фотохимических реакций, протекающих под действием солнечного излучения. В ясные дни солнечная радиация вызывает расщепление молекул двуокими азота с образованием окиси азота и атомарного кислорода: соединяясь с молекулярным кислородом, атомарный кислород образует озон. Казалось бы, озон, окисляя окись азота, должен вновь превратиться в кислород, а окись азота — в двуокись. Но этого не происходит, так как окись азота вступает в реакцию с содержащимися в отработанных газах олефинами, которые расщепляются и образуют осколки молекул. Так появляется избыток озона.[ …]

Рассмотрим распределение по высоте основных газов атмосферы. В области гомосферы общая концентрация меняется с высотой, но состав остается практически постоянным, т. е. все газы синхронно меняются по единой барометрической формуле, что иллюстрирует рис. 12.2, а. В гетеросфере начинает происходить физически очевидное изменение состава. На рис. 12.2, б сплошной кривой изображена в логарифмическом масштабе зависимость концентрации воздуха от высоты, а различными штриховыми кривыми изображены концентрации азота, кислорода, атомарного кислорода, аргона и гелия. Поскольку кислород тяжелее, его концентрация убывает несколько быстрее концентрации азота. На высоте около 120 км концентрация атомарного кислорода начинает превышать концентрацию молекулярного кислорода, а на высоте около 200 км и концентрацию азота. Иными словами, каждый газ меняется по своей отдельной формуле. Интересно, что атомарный кислород имеет даже локальный максимум концентрации, что связано с процессами ионизации, диссоциации, рекомбинации и соответствующего дрейфа. Таким образом, выше 80-100 км тяжелые газы «заканчиваются» быстрее, и относительная концентрация более легких газов возрастает. На больших высотах (рис. 12.2, в) преобладают атомарный кислород (200-600 км), гелий (600-1300 км), водород (выше 1300-1500 км). Приведенные кривые с рис. 12.2 представляют собой так называемые модели атмосферы: рис. 12.2, б— модель CIRA (COSPAR International Reference Atmosphere, 1972), рис. 12.2, в — та же модель распределения концентрации основных газов в термосфере на больших высотах при температуре экзосферы 800 К. Подобные модели неплохо описывают «усредненную» высотную структуру атмосферы, при этом концентрации газов зависят от температуры, особенно в термосфере, где температура определяется уровнем солнечной активности [8].[ …]

Оцените статью
Кислород
Добавить комментарий