Селен, свойства атома, химические и физические свойства

Селен, свойства атома, химические и физические свойства Кислород

Атом и молекула кислорода. формула кислорода. строение кислорода:

Кислород – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением О и атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.

Кислород самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы халькогенов.

Кислород – химически активный неметалл.

Кислород обозначается символом О.

Как простое вещество кислород (химическая формула O2) при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха. В жидком состоянии кислород имеет светло-голубой цвет, а в твёрдом – представляет собой кристаллы светло-синего цвета.

Молекула кислорода двухатомна. Также встречается аллотропная модификация кислорода – озон, молекула которого состоит из трёх атомов кислорода.

Химическая формула кислорода O2 (или O3 – озон).

Электронная конфигурация атома кислорода 1s2 2s2 2p4. Потенциал ионизации (первый электрон) атома кислорода равен 1313,94 кДж/моль (13,618055(7) эВ).

Строение атома кислорода. Атом кислорода (наиболее распространенный из трех изотопов кислорода (99,757 %) – 168О) состоит из положительно заряженного ядра ( 8), вокруг которого по атомным оболочкам движутся восемь электронов.

При этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поскольку кислород расположен во втором периоде, оболочки всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s- и р-орбиталями.

Два спаренных электрона находится на 1s-орбитали, вторая пара электронов – на 2s-орбитали. На 2р-орбитали находится два спаренных и два неспаренных электрона. Поэтому во всех своих соединениях кислород проявляет валентность II. В свою очередь ядро атома кислорода состоит из восьми протонов и восьми нейтронов. Кислород относится к элементам p-семейства.

Радиус атома кислорода (вычисленный) составляет 48 пм.

Атомная масса атома кислорода составляет 15,99903-15,99977 а. е. м.

Кислород – самый распространённый химический элемент на Земле. В земной коре на его долю в составе различных соединений приходится около 46 % массы. Морские и пресные воды содержат по массе 86 % кислорода (если быть точнее – 85,82 %). В человеке его содержание составляет по массе 61 %.

При высокой температуре молекула кислорода О2 обратимо диссоциирует на атомарный кислород. При 2000 °C на атомарный кислород диссоциирует 0,03 % молекулярного кислорода, при 2600 °C – 1 %, при 4000 °C – 59 %, при 6000 °C — 99,5 %.

Атомный радиус — общая и неорганическая химия

Важной характеристикой атома является его размер, т. е. атомный радиус. Размер отдельного атома не определен, поскольку внешняя его граница размыта за счет вероятностного нахождения электронов в различных точках околоядерного пространства.  В силу этого, в зависимости от типа связи между атомами различают металлические, ковалентные, ван-дер-ваальсовы, ионные и др. атомные радиусы.

«Металлические» радиусы (rme) найдены путем деления пополам кратчайших межатомных расстояний в кристаллических структурах простых веществ с координационным числом 12. При других значениях к.ч. учитывается необходимая поправка.

Значения ковалентных радиусов (rcov) рассчитаны как половина длины гомоатомной связи. В случае невозможности определить длину одинарной гомоатомной связи, значение rcov атома элемента A получают вычитанием ковалентного радиуса атома элемента B из длины гетероатомной связи A-B. Ковалентные радиусы зависят, главным образом, от размеров внутренней электронной оболочки.

Радиусы валентно-несвязанных атомов — ван-дер-ваальсовы радиусы (rw) определяют эффективные размеры атомов, обусловленные силами отталкивания заполненных энергетических уровней.

Значения энергии электронов, определенные по правилам Слэтера. позволили оценить относительную величину — кажущийся размер атома — rcmp (эмпирический радиус).

Длина связи дана в ангстремах (1 Å = 0.1 нм = 100 пм).

Элементrmercovrwrcmp
H0.460.371.200.25
He1.220.321.40
Li1.551.341.821.45
Be1.130.901.05
B0.910.820.85
C0.770.771.700.70
N0.710.751.550.65
O0.731.520.60
F0.711.470.50
Ne1.600.691.54
Na1.891.542.271.80
Mg1.601.301.731.50
Al1.431.181.25
Si1.341.112.101.10
P1.301.061.801.00
S1.021.801.00
Cl0.91.751.00
Ar1.920.971.88
K2.361.962.752.20
Ca1.971.741.80
Sc1.641.441.60
Ti1.461.361.40
V1.341.251.35
Cr1.271.271.40
Mn1.301.391.40
Fe1.261.251.40
Co1.251.261.35
Ni1.241.211.631.35
Cu1.281.381.401.35
Zn1.391.311.391.35
Ga1.391.261.871.30
Ge1.391.221.25
As1.481.191.851.15
Se1.601.161.901.15
Br1.141.851.15
Kr1.981.102.02
Rb2.482.112.35
Sr2.151.922.00
Y1.811.621.80
Zr1.601.481.55
Nb1.451.371.45
Mo1.391.451.45
Tc1.361.561.35
Ru1.341.261.30
Rh1.341.351.35
Pd1.371.311.631.40
Ag1.441.531.721.60
Cd1.561.481.581.55
In1.661.441.931.55
Sn1.581.412.171.45
Te1.701.352.061.40
I1.331.981.40
Xe2.181.302.16
Cs2.682.252.60
Ba2.211.982.15
La1.871.691.95
Ce1.831.85
Pr1.821.85
Nd1.821.85
Pm1.85
Sm1.811.85
Eu2.021.80
Gd1.791.80
Tb1.771.75
Dy1.771.75
Ho1.761.75
Er1.751.75
Tm1.741.75
Yb1.931.75
Lu1.741.601.75
Hf1.591.501.55
Ta1.461.381.45
W1.401.461.35
Re1.371.591.35
Os1.351.281.30
Ir1.351.371.35
Pt1.381.281.751.35
Au1.441.441.661.35
Hg1.601.491.551.50
Tl1.711.481.961.90
Pb1.751.472.021.80
Bi1.821.461.60
Po1.90
At
Rn1.45
Fr2.80
Ra2.352.15
Ac2.031.95
Th1801.80
Pa1.621.80
U1.531.861.75
Np1.501.75
Pu1.621.75
Am1.75

Общая тенденция изменения атомных радиусов такова. В группах атомные радиусы возрастают, так как с увеличением числа энергетических уровней увеличиваются размеры атомных орбиталей с большим значением главного квантового числа. Для d-элементов, в атомах которых заполняются орбитали предшествующего энергетического уровня, эта тенденция не имеет отчетливого характера при переходе от элементов пятого периода к элементам шестого периода.

В малых периодах радиусы атомов в целом уменьшаются, так как увеличение заряда ядра при переходе к каждому следующему элементу вызывает притяжение внешних электронов с возрастающей силой; число энергетических уровней в то же время остается постоянным.

Изменение атомного радиуса в периодах у d-элементов носит более сложный характер.

Величина атомного радиуса достаточно тесно связана с такой важной характеристикой атома, как энергия ионизации. Атом может терять один или несколько электронов, превращаясь в положительно заряженный ион — катион. Количественно эта способность оценивается энергией ионизации.

Список использованной литературы
  1. Попков В. А., Пузаков С. А. Общая химия: учебник. — М.: ГЭОТАР-Медия, 2022. — 976 с.: ISBN 978-5-9704-1570-2. [с. 27-28]
  2. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. — Мн.: Современная школа, 2005. — 608 с ISBN 985-6751-04-7. [c. 44-46]

Билет 18.

1. Общая характеристика. Сера, селен, теллур Э.

Сера, селен, теллур – состав 16й группы, халькогены (от греч рождающие медные руды). В природе чаще всего встречаются в форме соединений меди: сульфидов, селенидов и т.п.

В основном состоянии атомы имеют электронную конфигурацию ns2np4 с четным числом валентных электронов, два из которых неспарены. При переходе от серы к теллуру размер атомов и их возможные координационные числа увеличиваются, а значения энергии ионизации и электроотрицательность – уменьшаются. Сера типичный неметалл, селен и теллур металлоиды с характерными металлическими свойствами.

Проявляют высшую степень окисления 6. Устойчивость Э 6 понижается от серы к теллуру. Окислительная способность селена в высшей степени окисления значительно выше, чем у теллура и серы. Объяснение этого явления обусловлена влиянием внутренней 4f электронной оболочки, электроны которых слабо экранируют заряд ядер атомов. (т.е. происходит сжатие электронных оболочек из за повышения заряда ядра).

Для серы, селена и теллура образование двух одинарных связей оказывается предпочтительнее, чем одной двойной. При переходе от кислорода к сере прочность одинарной σ — связи растет из-за ослабления межэлектронного отталкивания, а прочность π – связи понижается, что связано с ростом радиуса и уменьшением перекрывания атомных p – орбиталей по π – типу.

Способность атомов элементов соединяться в кольца или цепи называется катенацией. Наиболее характерна катенация для серы, селена и теллура: для них известны цепи, содержащие десятки и сотни тысяч атомов. Катенация характерна не только для простых веществ. Известны соединения, содержащие гомоатомные цепи и циклы, стабилизированные концевыми атомами –H, -Cl или группами –SO3

Селен, свойства атома, химические и физические свойства

В свойствах серы прослеживается больше аналогий с селеном и теллуром. Так, в соединениях с отрицательными степенями окисления от серы к теллуру усиливаются восстановительные, а в соединениях с положительными степенями окисления – окислительные свойства, наиболее сильно выраженные у селена.

Химические и физические свойства.

Сера.

Ромбическая S(ромб.) и моноклинная S(мон.) модификации серы построены из циклических молекул S8, размещенных по узлам ромбической и моноклинной кристаллических решеток. Ромбическая сера желтого(tпл=112,8), а моноклинная сера бледно-желтого цвета(tпл=119,3). Малоустойчивая в обычных условиях пластическая сера состоит из нерегулярно расположенных зигзагообразных цепочек S. При t=200 сера становится темно-коричневой и вязкой, как смола происходит разрушение кольцевых молекул S8 и образование длинных цепей S. Дальнейшее нагревание выше 250оС ведет разрыву цепей, и жидкость снова становится более подвижной. При 444,6 сера закипает, в зависимости от температуры в парах образуются молекулы S8, S6, S4 и S2. При 1500 молекулы S2 диспропорционируют на атомы. Молекулы S2 парамагнитны, во всех других состояниях сера диамагнитна.

В воде сера практически нерастворима; некоторые ее модификации растворяются в органических жидкостях и в особенности в сероуглероде. Сера – достаточно активный неметалл. Даже при умеренном нагревании она окисляет многие простые вещества, но и сама довольно легко окисляется кислородом и галогенами. При нагревании в кипящих растворах щелочей сера диспропорционирует:

3S 6NaOH = 2Na2SO3 3H2O

Селен.

Как и сера, селен имеет полиморфные модификации. Наиболее устойчив гексагональный или серый селен. Его кристаллы образованы зигзагообразными цепями Se∞. При быстром охлаждении жидкого селена получается красно-коричневая стекловидная модификация. Она образована неупорядоченно расположенными молекулами Se разной длины. Кристаллические разновидности красного селена состоят из циклических молекул Se8, подобных S8. Серый селен – полупроводник.

Теллур.

У теллура устойчива гексагональная модификация. Это серебристо-белое металлоподобное кристаллическое вещество. Однако он хрупок, легко растирается в порошок. Его электрическая проводимость незначительна, но при освещении увеличивается, т.е. теллур – полупроводник. Аморфный теллур менее устойчив, чем аморфный селен, и при 25 С переходит в кристаллический.

Селен и теллур с водой и разбавленными кислотами не реагирует. Подобно другим неметаллам, окисляются концентрированной HNO3 до кислот. При кипячении в щелочных растворах Se и Te, подобно S, диспропорционируют:

3Э 6NaOH = 2Na2ЭO3 2K2Э 3H2O

При нагревании селен и теллур довольно легко окисляются кислородом и галогенами, при сплавлении взаимодействуют с металлами.

Нахождение в природе. Получение.

Халькогены в природе сконцентрированы в рудных месторождениях, где они связаны преимущественно с металлами. Значительная часть серы находится либо в самородном состоянии (вулканическая сера), либо в форме сульфидов и сульфатов. Из природных газов, содержащих сероводород, серу получают путем окисления части H2S до сернистого газа и взаимодействия образовавшегося SO2 с H2S в присутствии катализаторов на основе оксидо железа и алюминия:

2H2S SO2=3S↓ 2H2O

Основным источником селена и теллура служат остатки после электролитической очистки меди, содержащие также значительное количество серебра, золота и платиновых металлов, отходы сернокислотного и целлюлозо – бумажного производства, некоторые свинцово – цинковые и висмутовые руды. В них оба элемента содержатся в форме халькогенидов.
Теллур осаждается в виде гидратированного диоксида, а селенистая кислота осаждается в растворе. Из этого раствора действием SO2 осаждают красный селен чистотой 99,5%:

H2SeO3 2SO2 H2O=Se↓ 2H2SO4

Гидратированный TeO2 растворяют в щелочи и электролитически восстанавливают до теллура:

Na2TeO3 H2O Селен, свойства атома, химические и физические свойства Te↓ 2NaOH O2

Окислительно-восстановительные свойства соединений Э.

Водородные соединения.

В водных растворах гидриды H2Э ведут себя как слабые двухосновные кислоты. Сила кислот возрастает от серы к теллуру благодаря понижению энергии связи Э-H и обеспечению ее разрыва при политропическом взаимодействии с водой:

H2Э H2О = H3О

Халькогеноводороды сгорают на воздухе с образованием диоксидов:

H2Э Селен, свойства атома, химические и физические свойства О2 = ЭО2 H2О

Но при недостатке окислителя могут быть получены и простые вещества.

В кислых растворах H2Э ведут себя как мягкие восстановители. Восстановительные свойства H2Э усиливаются при переходе от H2O к H2Po. Кислород, галогены и другие типичные окислители(HNO3, KMnO4, KClO3) окисляют халькогеноводороды. Сероводород в зависимости от условий может окисляться в водном растворе до серы, сернистого газа, тиосульфата, политионатов, серной кислоты:

H2S 4Cl2 4H2O = H2SO4 8HCl

H2S I2 = 2HI S↓

Сульфиниды, селениды и теллуриды металлов.

Встречаются в природе как минералы и руды и служат сырьем для получения металлов.

В воде хорошо растворимы лишь сульфиды щелочных металлов, аммония и бария. Их водные растворы вследствие гидролиза имеют щелочную реакцию.

2CaS 2H2O = Ca(HS)2 Ca(OH)2

Процессы получения многих металлов сводятся к переработке их сульфидов металлов, например MS, с кислородом в зависимости от условий теоритически возможно образование оксидов:

2MS(тв.) 3O2 = 2MO(тв.) 2SO2↑,

Сульфатов:

MS(тв.) 2O2 = MSO4(тв.),

Или металлов:

MS(тв.) O2 = M(тв.) SO2↑.

Галогениды халькогенов.

Галогениды S, Se – жидкости и газы, кроме тв. SeCl4

Гигроскопичны, кроме SF6

SeCl4 3H2O = H2SeO3 4HCl гидролиз

SF6 6HI = 6HF 3I2 S

Галогениды теллура – твердые вещества, кроме TeF6

Бромиды и иодиды не реагируют с водой при н.у.

TeBr4 H2O ≠

TeCl4 3H2O = TeO2·H2O 4HCl

Оксиды халькогенов.

С увеличением размера атома халькогена в ряду SeO2—ТеO2—РоO2 ослабевают кислотные и, наоборот, усиливаются основные свойства. Твердый диоксид селена хорошо растворим в воде, и при этом образуется селенистая кислота:

SeO2 Н2O = H2SeO3

Оксиды ТеO2 в воде не растворяется в силу высокой энергии

кристаллической решетки. Диоксид теллура, подобно сернистому и селенистому ангидриду, взаимодействует со щелочами, образуя теллуриты металлов:

ТеO2 2NaOH = Na2TeO32O

В то же время он, проявляя амфотерные свойства, реагирует с кислотами-

окислителями:

2ТеO2 HNO3 = Te2O3(OH)NO3

а за счет комплексообразования — и с соляной кислотой:

ТеO2 6HC1 = Н2ТеС162O

Для диоксидов серы, селена и теллура характерна окислительно-восстановительная двойственность. Восстановительные свойства наиболее выражены у SO2 и ТеO2. Так, сернистый газ обесцвечивает йодную воду:

SO2 I22O = 2HI H2SO4

и раствор перманганата калия:

5SO2 2КMnO4 2H2O = 2MnSO4 2KHSO4 H2SO4

Окислительные свойства S02 проявляются при взаимодействии с сильными восстановителями:

SO2 2СО = S 2СO2 (при 5000С, Al2O3)

SO2 2H2 =S 2H2O

Серный ангидрид – одно из самых реакционноспособных соединений. Он проявляет окислительные свойства, например, превращает уголь в углекислый газ:

2SO3 С = 2SO2 СO2

Особенности взаимодействия SO3 с галогенводородами связаны с ростом

восстановительных свойств в ряду НС1—HBr— HI. Окислительные свойства SO3 усиливаются с ростом температуры. При слабом нагревании SO3 реагирует с газообразным НС1, образуя хлорсульфоновую кислоту HSO3C1:

SO3 НС1 = HO(Cl)SO2

При повышении температуры НСl восстанавливает SО3 до SО2 с одновременным образованием Сl2. При действии на НВг триоксида серы при 0°С выделяются SО2 и свободный бром:

2SО3 2HBr = SО2 Br2 H24

Йодистым водородом SО3 восстанавливается до H2S даже при охлаждении ниже 0°С:

SO3 8HI = H2S 4I2 3H2O

Селеновый ангидрид — сильнейший окислитель. Он окисляет хлороводород до хлора:

SeO3 2HC1 = H2SeO3 Cl2

а фосфор — до фосфорного ангидрида:

5SeO3 2Р = Р2O5 5SeO2

Окислительные свойства триоксида теллура выражены гораздо слабее, чем Se03, -он вытесняет хлор из соляной кислоты только при нагревании.

Оксокислоты халькогенов Э(IV).

Сернистая кислота H2S03 в индивидуальном состоянии не выделена. Селенистая кислота H2Se03 — белое кристаллическое вещество, хорошо растворимое в воде. Ее получают окислением селена разбавленной HN03:

3Se 4HN03 Н20 = 3H2Se03 4NO

Теллуристая кислота — это гидратированный диоксид Те02 • хН20. Она образуется в виде белого осадка при гидролизе тетрагалогенидов:

ТеС14 (2 х)Н20 = Те02 • хН20↓ 4HC1

Сила кислот уменьшается в ряду H2S03—H2Se03—Н2Те03. По мере роста радиуса и уменьшения электроотрицательности атом халькогена слабее смещает электронную плотность от атома кислорода гидроксильной группы и, таким образом, слабее поляризует связь О—Н.

Усиление окислительной способности:

H2SO3 > H2TeO3> H2SeO3

Оксокислоты халькогенов(VI)

В молекуле H2S04 сера тетраэдрически окружена четырьмя атомами кислорода, два из которых входят в состав гидроксильных групп. Длины связей в молекуле H2S04 таковы, что связи S—О можно считать двойными, а связи S—ОН — одинарными. Бесцветные, похожие на лед кристаллы H2S04 имеют слоистую структуру: каждая молекула H2S04 соединена с четырьмя соседними молекулами прочными водородными связями, образуя единый пространственный каркас.

H2S04 и H2Se04 — сильные двухосновные кислоты. Они близки по структуре и свойствам. Их соли — сульфаты и селенаты — изоморфны и образуют квасцы состава МАl(Э04)3* 12Н20, где М — щелочной металл; Э = S, Se.

Ортотеллуровая кислота Н6Те06 — бесцветное гигроскопичное вещество, хорошо растворимое в воде. Ее структура отличается от структуры H2S04 и H2Se04 и построена из правильных октаэдров Те06, сохраняющихся и в растворах. Такое строение обусловливает отличие свойств Н6Те06 от свойств H2S04 и H2Se04. Отсутствие концевых атомов кислорода, которые могли бы оттягивать электронную плотность от атома Те и поляризовать связь Н—О, объясняет тот факт, что Н6Те06 слабее даже угольной кислоты.

Усиление окислительной способности:

H2SO4 > H6TeO6> H2SeO4

Соединения серы: сероводород, сульфиды, сульфаны, полисульфиды, оксид серы(IV), сернистая кислота, сульфиты.

Кислоту H2S04 можно называть ортосерной кислотой, так как в ней содержится наибольшее число гидроксильных групп, связанных с одним атомом серы(VI). При дегидратации H2S04 или при насыщении водного раствора серной кислоты серным ангидридом:

H2S04 S03 = H2S207

Пиросерная кислота — бесцветные прозрачные кристаллы (tпл= 35 °С), дымящие на воздухе. Ее соли — пиросульфаты — получают обезвоживанием кислых сульфатов.

Серная и селеновая кислота.

В молекуле H2S04 сера тетраэдрически окружена четырьмя атомами кислорода, два из которых входят в состав гидроксильных групп. Длины связей в молекуле H2S04 таковы, что связи S—О можно считать двойными, а связи S—ОН — одинарными. Бесцветные, похожие на лед кристаллы H2S04 имеют слоистую структуру: каждая молекула H2S04 соединена с четырьмя соседними молекулами прочными водородными связями, образуя единый пространственный каркас. При температуре 10,3°С H2S04 плавится с образованием тяжелой маслянистой жидкости, кипящей с разложением при 300 «С. Такая кислота дымит на воздухе. Структура жидкой H2S04 такая же, как твердой, только целостность пространственного каркаса нарушена, и его можно представить как совокупность микрокристалликов, постоянно меняющих свою форму.

Серная кислота обладает сильными окислительными свойствами только в концентрированном растворе и при нагревании:

2H2S04(конц.) Си = CuS04 S0220

Серная кислота смешивается с водой в любых соотношениях, процесс сопровождается образованием различных гидратов H2S04*nН20.

Теплота гидратации настолько велика (приблизительно 880 кДж/моль), что смесь может даже вскипеть, разбрызгаться и вызвать ожоги кожи и разрушение одежды. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении Н20 в H2S04 более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота. В результате может произойти вскипание и разбрызгивание. Высокое сродство серной кислоты к воде позволяет использовать ее как водоотнимающее средство.

С серной кислотой реагируют многие простые вещества — металлы и неметаллы. На холоде H2S04 инертна по отношению к таким металлам, как железо, алюминий и даже барий. Продуктами ее восстановления в зависимости от условий проведения реакций (природы металла, температуры, концентрации) могут быть S02, H2S, S, политионаты.

Серная кислота образует два ряда солей: сульфаты и гидросульфаты. Гидросульфаты некоторых переходных и постпереходных металлов представляют собой комплексные кислоты. Термическая устойчивость сульфатов определяется природой катиона, а состав продуктов разложения зависит от температуры процесса.

Безводная H2Se04 — бесцветное неустойчивое кристаллическое вещество, построенное из слоев искаженных тетраэдров Se04 и плавящееся при 57 °С с разложением:

2H2Se04 = 2H2Se03 02

2. Соединения никеля(III), кобальта(III) и железа(III). Получение. Сравнение устойчивости и окислительно-восстановительных свойств.

Оксиды.

Оксид Fe203. Оксид железа(III) встречается в природе в виде минерала

гематита со структурой корунда, представляющей собой плотнейшую гексагональную упаковку из ионов кислорода, в октаэдрических пустотах которой находятся ионы железа. Гематит образуется при дегидратации оксогидроксида железа(Ш), разложении железного купороса при температуре 700 — 800 «С.

Оксид железа(Ш), полученный при низкотемпературном обезвоживании гидроксида, растворим в кислотах с образованием растворов солей железа(Ш), при сплавлении реагирует с щелочами и карбонатами с образованием ферритов:

Fe203 Na2C03 = 2NaFe02 C02

Существование оксида кобальта(Ш) точно не установлено, хотя в пользу его образования свидетельствует способность Со304 поглощать кислород. По-видимому, формулу Со203 можно условно приписать бурому порошку, образующемуся при осторожном обезвоживании оксогидроксида кобальта(III) или при термическом разложении [Co(NH3)3(N02)3]. Содержание кислорода в полученном продукте всегда оказывается меньше стехиометрического, что свидетельствует о наличии в нем хотя бы небольшой части ионов Со2 . Оксид никеля(III) как индивидуальное вещество неизвестен.

Гидроксиды.

Гидроксид железа(III) относят к слабым (Kb ~10-11) амфотерным основаниям с преобладающими основными свойствами. Он легко растворим в кислотах с образованием растворов солей железа(Ш); с концентрированными растворами щелочей при рН > 14 дает бесцветные гидроксоферраты(III):

3Ва(ОН)2 2FeOOH 2Н20 = Ba3[Fe(OH)6]2

Гидроксид железа(III) в водных растворах устойчив как к окислению, так и к восстановлению. Сильные окислители (бром, гипохлорит) способны перевести его в ферраты(V1).

В степени окисления 3 железо образует соли практически со всеми кислотами. Сульфат железа(III) кристаллизуется из водных растворов в виде различных гидратов, содержащих до десяти молекул воды. Подобно многим другим солям трехзарядных катионов сульфат железа(Ш) образует квасцы KFe(S04)2*12H20, кристаллизующиеся в форме красивых бледно-фиолетовых октаэдров. Нитрат железа(Ш) проще всего получать взаимодействием железа с 50%-й азотной кислотой. Соль кристаллизуется в виде бледно-лиловых кристаллов, представляющих собой нонагидрат. При слабом нагревании она плавится в своей кристаллизационной воде, а при температуре 125 °С расплав закипает с разложением.

Ион Fe3 является слабым окислителем. Он вступает в реакции лишь с сильными восстановителями, такими как сероводород, соли олова(II), гидразин, гидроксиламин, иодид:

2FeCl3 S02 2H20 = 2FeCl2 H2S04 2HC1

Для железа(III), как и для изоэлектронного ему марганца(II), характерно образование высокоспиновых октаэдрических комплексов, обсуждавшихся ранее на примере акваиона.

Аммиакаты железа(Ш), например [Fe(NH3)6]Br3, образующийся при взаимодействии твердого безводного бромида железа(Ш) с газообразным NH3, существуют только в неводных средах, поэтому для осаждения гидроксида железа(Ш) удобно использовать водный раствор аммиака.

Низкоспиновые комплексы железа(III) известны лишь с лигандами сильного поля. Все они рассмотрены при описании свойств соединений железа(III). Тетраэдрические комплексы [FeX4] формируются главным образом с объемными анионными лигандами, например хлоридом и бромидом.

Соединения Fe(III) – слабые окислители в кислой среде

Fe2(SO4)3 H2S = 2FeSO4 H2SO4 S

Fe2(SO4)3 SO2 2H2O = 2FeSO4 2H2SO4

2Fe2(SO4)3 2(NH3OH)HSO4= 4FeSO4 N2O 4H2SO4 H2O

Fe2(SO4)3 2KI = 2FeSO4 K2SO4 I2

3. Способы выражения концентраций растворов и их взаимный пересчет.

· Массовая доля растворённого вещества w — это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m:

W = m(B) / m (р-ра)*100%

· Молярная концентрация C (молярность ) — показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C=n/v (моль/л)

· Нормальность раствора — обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм — эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту.

Cf=nf/v (моль/л)

· Моляльность — концентрация раствора, выраженная числом молей (грамм-молекул ) растворённого вещества, содержащегося в 1000 г растворителя.

b= n/1000г/рас-ля (моль/кг)

· Мольная доля — концентрация, выраженная отношением числа молей вещества к общему числу молей всех веществ, имеющихся в растворе.

Х=nвещ-ва/nвещ-ва nр-ля

Кислород, свойства атома, химические и физические свойства.

О 8  Кислород

15,99903-15,99977*     1s2 2s2 2p4

Кислород — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 8. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), втором периоде периодической системы.

Атом и молекула кислорода. Формула кислорода. Строение кислорода

Изотопы и модификации кислорода

Свойства кислорода (таблица): температура, плотность, давление и пр.

Физические свойства кислорода

Химические свойства кислорода. Взаимодействие кислорода. Реакции с кислородом

Получение кислорода

Применение кислорода

Таблица химических элементов Д.И. Менделеева

Нахождение в природе кислорода и серы

Кислород занимает первое место среди элементов по
распространенности в земной коре. Содержится
он главным образом в силикатах и составляет около 47 % массы твёрдой земной
коры. В больших количествах связанного кислорода содержится в воде — 85,82 % по
массе.

Сера встречается в виде самородной серы, сульфатов (CaSO4∙2H2O, CaSO4∙H2O, Na2SO4∙10H2O, MgSO4∙7H2O), сульфидов (FeS2, CuS, CuFeS2, PbS, ZnS, HgS) и в промышленных газах.

Самородная сера встречается в местах
вулканической активности совместно с сернистыми фумаролами и сернистыми водами
(с содержанием > 25 %).

Применение кислорода:

Таблица химических элементов Д.И. Менделеева

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Таблица химических элементов Д.И. Менделеева

Решу егэ

Решение.

Выпишем валентные электроны и количество внутренних электронов в атоме каждого из элементов:

1. Ca$ — 4s2, 2 электрона на внешнем уровне, всего 20 электронов, значит, 18 электронов на внутренних уровнях.

2. O$ — 2s22p4, 6 электронов на внешнем уровне, всего 8 электронов, значит, 2 электрона на внутренних уровнях.

3. F$ — 2s22p5, 7 электронов на внешнем уровне, всего 9 электронов, значит, 2 электрона на внутренних уровнях.

4. Cr$ — 4s13d5, 6 электронов на внешнем уровне, всего 24 электрона, значит, 18 электронов на внутренних уровнях.

5. S$ — 3s23p4, 6 электронов на внешнем уровне, всего 16 электронов, значит, 10 электронов на внутренних уровнях.

Соответственно, у кислорода и фтора на внешнем уровне находится больше электронов, чем на внутренних уровнях.

Ответ: 23.

Способы получения кислорода

В
природе

Кислород образуется в процессе фотосинтеза:

mCО2 nH2O → mO2 Сm(H2O)n

Промышленный способ

  • Разделение жидкого воздуха на О2 и N2 (ректификация);

2H2O → 2Н2↑ О2↑

Лабораторный
способ

  • термическое окислительно-восстановительное разложение солей:

2КСlO3 = 3О2↑ 2KCI

2КМпO4 = О2↑ МпО2 К2МпО4↑

2KNO3 = О2↑ 2KNО2

2Cu(NO3)O2 = О2↑ 4NО2↑ 2CuO

2AgNO3 = О2↑ 2NО2↑ 2Ag

2H2O2 = 2H2O O2 (kt — MnO2)

2HgO = 2Hg O2

  • Для автономного дыхания кислород получают в герметически замкнутых помещениях и в аппаратах при помощи реакции:

2Na2O2 2СO2 = О2↑ 2Na2CO3

Химические свойства кислорода

Кислород — сильный окислитель, уступающий по химической активности только фтору.

Вступает во
взаимодействия со всеми элементами, кроме инертных газов (Не, Ne и Аг). Со
многими простыми веществами реагирует непосредственно при обычных условиях или
при нагревании или в присутствии катализаторов (кроме Au, Pt, Hal2, благородные газы).

Большинство реакций с участием О2 экзотермичны, часто часто сопровождаются горением, иногда — взрывом.

Взаимодействие с простыми веществами

С металлами

  • Кислород взаимодействует с металлами, с образованием оксидов металлов:

Me О2 = МеxOy оксиды

4Li О2 = 2Li2O оксид лития

2Na О2 = Na2О2 пероксид натрия

К О2 = КО2 супероксид калия

  • С железом образуется смесь оксидов:

3Fe 2O2 =
Fe3O4 (Fe2O3*FeO)

  • С марганцем образуется диоксид марганца:

Mn O2 = MnO2

С неметаллами

При
взаимодействии с неметаллами (кроме фтора и инертных газов) образуются оксиды,
со степенью окисления кислорода – 2:

Si O2 = SiO2 (t=400-5000С)

С О2(изб) = СО2; С О2(нед) =
СО

N2 О2 = 2NO — Q

S О2 = SО2;

4Р 5О2 = 2Р2О5

Окисление сложных веществ

Горение сульфидов

4FeS2  11O2 = 2Fe2O3  8SO2

Горение водородных соединений

4HI О2 = 2I2 2Н2O

2H2S 3O2 = 2SO2 
2H2O

CH4 
2O2 = CO2  2H2O

Окисление
оксидов

Кислород окисляет
входящие в оксид элементы до более высокой степени окисления:

4FeO О2 = 2Fe2О3

2SО2 О2 = 2SО3

4NО2 О2 2H2O = 4HNО3

Окисление гидроксидов и солей

Окисление гидроксидов и солей в водных растворах происходит, если исходное вещество неустойчиво на воздухе:

2HNO2  O2 = 2HNO3

4Fe(OH)2  O2  2H2O
= 4Fe(OH)3

Окисление аммиака

В отсутствие катализатора при окислении аммиака кислородом образуется азот, а в присутствии катализатора — оксида азота(II):

4NH3 3О2 =2N2 6Н2O

4NH3 5О2 = 4NO 6Н2O

Окисление
фосфина

На
воздухе самопроизвольно воспламеняется:

2PH3 4О2 = P2О5 3Н2O

Окисление
силана

На воздухе он самовоспламеняется (часто
со взрывом) с образованием SiO2 и H2O:

SiH4 2О2 = SiО2 2Н2O

Окисление органических веществ

CxHy О2 = CО2 Н2O

Продукты
окисления различных элементов, входящих в молекулы органических соединений:

С → CO2

Н → Н2O

Hal → Hal2

N → N2

P → P2O5

S → SO2

Например:

2C2H5 4О2 = 4CО2 5Н2O

C2H5Сl 3О2 = 2CО2 2Н2O HCl

2C2H5NH2 8,5О2 = 4CО2 7Н2O N2

Кроме горения возможны также реакции неполного окисления:

СН3-СН2-СН2-СН3  3O2 → 2СН3-СOOH 2H2O

  • окисление первичных спиртов до альдегидов, вторичных – до кетонов:
  • окисление альдегидов до кислот:

Химические свойства серы

При
обычных температуре и давлении химическая активность серы небольшая. При
нагревании сера довольно активна, и проявляет свойства как окислителя, так и восстановителя.

Свойства окислителя сера проявляет при взаимодействии с элементами, расположенными ниже и левее в Периодической системе, а свойства восстановителя — с элементами, расположенными выше и правее в Периодической системе.

Непосредственно сера не взаимодействует с азотом и йодом.

Взаимодействие с простыми веществами

С
кислородом

Горение серы на воздухе с образованием оксида серы (IV):

S O2 → SO2

В присутствии
катализаторов:

2S 3O2 = 2SO3

С водородом

С водородом сера вступает
в реакцию при нагревании, образуя сероводород:

S H2 → H2S

С
галогенами

При
взаимодействии со всеми галогенами, кроме йода образуются галогениды:

S Cl2 → SCl2 (S2Cl2)

S 3F2 → SF6

С
фосфором

Взаимодействие серы с фосфором приводит к образованию сульфидовфосфора

2P 3S → P2S3

2P 5S → P2S5

С углеродом

В реакции серы суглеродомобразуется сероуглерод:

2S C → CS2

С металлами

При
взаимодействии с металлами сера выступает
в качестве окислителя, образуя сульфиды.

Щелочные металлы реагируют с серой без нагревания, остальные металлы (кроме золота Au и платины Pt) –при нагревании:

S Fe → FeS

S Hg → HgS

3S 2Al → Al2S3

S Сu = CuS

S 2Ag = Ag2S

Взаимодействие со сложными веществами

С водой

Сера вступает в реакцию диспропорционирования
с перегретым паром:

S H2O (пар) → 2H2S SO2

С окислителями

В реакциях с окислителями сера окисляется до оксида серы (IV) SO2 или до серной кислоты H2SO4 при протекании реакции в растворе:

S 2HNO3(разб.) = H2SO4 2NO↑

S 6HNO3(конц.)  → H2SO4 6NO2↑ 2H2O

S 2H2SO4(конц.)→ 3SO2↑ 2H2O

S 2KClO3 → 3SO2↑ 2KCl

S К2Сr2O7 = Сr2O3 K2SO4

S Na2SO3 → Na2S2O3

С щелочами

При взаимодействии с щелочами сера диспропорционирует до сульфита и сульфида:

S NaOH → Na2SO3 Na2S H2O

Оцените статью
Кислород
Добавить комментарий