- Таблица: плотности, химические формулы и молекулярные веса основных распространенных газов — ацетилен, воздух, метан, азот, кислород и многих других — таблицы
- Основные характеристики горючих газов
- Таблица 6. зависимость плотности от температуры: пропан, изобутан, н-бутан
- Таблица 7. использование суг для производства продуктов для органического синтеза
Таблица: плотности, химические формулы и молекулярные веса основных распространенных газов — ацетилен, воздух, метан, азот, кислород и многих других — таблицы
Таблица: плотности, химические формулы и молекулярные веса основных распространенных газов — ацетилен, воздух, метан, азот, кислород и многих других
Газ | Химическая формула | Молегулярный вес | Плотность | |
---|---|---|---|---|
кг/м3 | футов/фут3(lb/ft3) | |||
Азот / Nitrogen | N2 | 28.02 | 1.1651) 1.25062) | 0.07271) 0.0780722) |
Ацетилен = этин / Acetylene (ethyne) | C2H2 | 26 | 1.0921) 1.1702) | 0.06821) 0.07292) |
Аммиак / Ammonia | NH3 | 17.031 | 0.7171) 0.7692) | 0.04481) 0.04802) |
Аргон / Argon | Ar | 39.948 | 1.6611) 1.78372) | 0.10371) 0.1113532) |
Бензол / Benzene | C6H6 | 78.11 | 3.486 | 0.20643 |
Биогаз, генерируемый метантенком; метан, генерируемый метантенком / Digester Gas (Sewage or Biogas) | 0.062 | |||
Бутан / Butane | C4H10 | 58.1 | 2.4891) 2.52) | 0.15541) 0.1562) |
Бутилен = Бутен / Butylene (Butene) | C4H8 | 56.11 | 2.504 | 0.1482) |
Веселящий газ, закись азота / Nitrous Oxide | N2O | 44.013 | 0.114 | |
Водород / Hydrogen | H2 | 2.016 | 0.08992) | 0.00562) |
Водяной пар / Water Vapor, steam | H2O | 18.016 | 0.804 | 0.048 |
Водяной битуминозный газ= голубой водяной газ жирный / Water gas (bituminous) | 0.054 | |||
Водяной карбюрированный газ = голубой водяной газ / Carbureted Water Gas | 0.048 | |||
Воздух / Air | 29 | 1.2051) 1.2932) | 0.07521) 0.08062) | |
Гелий / Helium | He | 4.02 | 0.16641) 0.17852) | 0.010391) 0.0111432) |
Гексан / Hexane | 86.17 | |||
Двукосиь азота / Nitric oxide | NO | 30.0 | 1.2491) | 0.07801) |
Двуокись азота = перекись азота / Nitrogen Dioxide | NO2 | 46.006 | ||
Доменный газ = колошниковый газ / Blast furnace gas | 1.2502) | 0.07802) | ||
Дисульфид углерода = двусернистый углерод = сернистый углерод = сероуглерод / Carbon disulphide | 76.13 | |||
Криптон / Krypton | 3.742) | |||
Коксовальный газ = коксовый газ / Coke Oven Gas | 0.0342) | |||
Метан / Methane | CH4 | 16.043 | 0.6681) 0.7172) | 0.04171) 0.04472) |
Метиловый спирт / Methyl Alcohol | 32.04 | |||
Пригодный газ = натуральный газ / Natural gas | 19.5 | 0.7 — 0.92) | 0.044 — 0.0562) | |
Продукты сгорания = смесь продуктов полного сгорания в виде CO2, Н2О, SO2 и золы неполного сгорания в виде СО, Н2, и др., а также азота и кислорода / Combustion products | 1.112) | 0.0692) | ||
Изопентан / Iso-Pentane | 72.15 | |||
Кислород / Oxygen | O2 | 32 | 1.3311) 1.42902) | 0.08311) 0.0892102) |
Ксенон / Xenon | 5.862) | |||
Метилбензол = толуол / Toluene | C7H8 | 92.141 | 4.111 | 0.2435 |
Неон / Neon | Ne | 20.179 | 0.89992) | 0.0561792) |
Н-гептан / N-Heptane | 100.20 | |||
Н-октан / N-Octane | 114.22 | |||
Н-пентан / N-Pentane | 72.15 | |||
Озон / Ozone | O3 | 48.0 | 2.142) | 0.125 |
Оксид серы (II)= диоксид серы = двуокись серы = сернистый ангидрид = сернистый газ / Sulfur Dioxide | SO2 | 64.06 | 2.2791) 2.9262) | 0.17031) 0.18282) |
Оксид серы (III)= триоксид серы = серный ангидрид = серный газ / Sulfur Trioxide | SO3 | 80.062 | ||
Оксид серы (I)= моноксид серы / Sulfuric Oxide | SO | 48.063 | ||
Пропан / Propane | C3H8 | 44.09 | 1.8821) | 0.11751) |
Пропен = пропилен / Propene (propylene) | C3H6 | 42.1 | 1.7481) | 0.10911) |
Перокид азота / Nitrous Trioxide | NO3 | 62.005 | ||
Светильный газ угольный газ (горючий газ, состоящий из 20-30% метана и 50% водорода получаемый из каменного угля в процессе его полукоксования и частичного термического крекинга / Coal gas | 0.582) | |||
Сера / Sulfur | S | 32.06 | 0.135 | |
Соляная кислота = хлористый водород / Hydrochloric Acid = Hydrogen Chloride | HCl | 36.5 | 1.5281) | 0.09541) |
Сероводород = сернистый водород / Hydrogen Sulfide | H2S | 34.076 | 1.4341) | 0.08951) |
Угарный газ, моноксид углерода / Carbon monoxide | CO | 28.01 | 1.1651) 1.2502) | 0.07271) 0.07802) |
Углекислый газ = двуокись углерода / Carbon dioxide | CO2 | 44.01 | 1.8421) 1.9772) | 0.11501) 0.12342) |
Хладагент R-11 | 137.37 | |||
Хладагент R-12 | 120.92 | |||
Хладагент R-22 | 86.48 | |||
Хладагент R40 = хлористый метил / Methyl Chloride | 50.49 | |||
Хладагент R-114 | 170.93 | |||
Хладагент R-123 | 152.93 | |||
Хладагент R-134a | 102.03 | |||
Холодильный агент R160 =хлористый этил / Ethyl Chloride | 64.52 | |||
Хлор / Chlorine | Cl2 | 70.906 | 2.9941) | 0.18691) |
Циклогексан / Cyclohexane | 84.16 | |||
Этан / Ethane | C2H6 | 30.07 | 1.2641) | 0.07891) |
Этиловый спирт = этанол / Ethyl Alcohol | 46.07 | |||
Этилен / Ethylene | C2H4 | 28.03 | 1.2602) | 0.07862) |
1)NTP — Нормальная температура и давление (Normal Temperature and Pressure) — 20oC (293.15 K, 68oF) при 1 атм ( 101.325 кН/м2, 101.325 кПа, 14.7 psia, 0 psig, 30 in Hg, 760 мм.рт.ст)
2)STP — Стандартная температура и давление (Standard Temperature and Pressure) — 0oC (273.15 K, 32oF) при 1 атм (101.325 кН/м2, 101.325 кПа, 14.7 psia, 0 psig, 30 in Hg, 760 torr=мм.рт.ст)
Основные характеристики горючих газов
Природные газы. Горючие природные газы — результат биохимического и термического разложения органических остатков. Чаще месторождения природного газа сосредоточены в пористых осадочных породах (пески, песчаники, галечники), подстеленных или покрытых плотными (например, глинистыми), породами. Во многих случаях «подошвой» для них служат нефть и вода.
В сухих месторождениях газ находится преимущественно в виде чистого метана с очень малым количеством этана, пропана и бутанов. В газоконденсатных, помимо метана, в значительной доле содержатся этан, пропан, бутан и других более тяжелые углеводороды, вплоть до бензиновых и керосиновых фракций. В попутных нефтяных газах находятся легкие и тяжелые углеводороды, растворенные в нефти.
Требования, предъявляемые к природным топливным газам для коммунально-бытового назначения, показаны в табл. 3.1. Согласно требованиям ГОСТ 5542-87, горючие свойства природных газов характеризуются числом Воббе, которое представляет собой отношение теплоты сгорания (низшей или высшей) к корню квадратному из относительной (по воздуху) плотности газа:
Wo = Qн /Vd (3.1)
Пределы колебания числа Воббе весьма широки, поэтому для каждой газораспределительной системы (по согласованию между поставщиком газа и потребителем) требуется установить номинальное значение числа Воббе с отклонением от него не более ±5%, чтобы учесть неоднородность и непостоянство состава природных газов.
По этим причинам при переводе тепловых установок с одного газа на другой необходимо обращать внимание на близость не только значений чисел Воббе обоих газов, которые обеспечивают постоянство тепловой мощности всех горелок, но и всех их физико-химических характеристик.
Сжиженные углеводородные газы. К сжиженным углеводородным газам относят такие, которые при нормальных физических условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления (без снижения температуры) переходят в жидкое.
Основные газообразные углеводороды, входящие в состав сжиженных газов, характеризуются высокой теплотой сгорания, низкими пределами воспламеняемости, высокой плотностью (значительно превосходящей плотность воздуха), высоким объемным коэффициентом расширения жидкости (значительно большим, чем у бензина и керосина), что обусловливает необходимость заполнять баллоны и резервуары не более чем на 85–90% их геометрического объема, значительной упругостью насыщенных паров, возрастающей с ростом температуры, и малой плотностью жидкости относительно воды.
Химический состав сжиженных углеводородных газов различен и зависит от источников их получения. Сжиженные газы из попутных нефтяных и газоконденсатных месторождений состоят из предельных (насыщенных) углеводородов — алканов, имеющих общую химическую формулу СnН2n 2. Основными компонентами этих углеводородов являются пропан и бутан.
Недопустимо наличие в сжиженном газе в значительных количествах этана и метана (они резко увеличивают упругость насыщенных паров), пентана и его изомеров (поскольку это влечет за собой резкое снижение упругости насыщенных паров и повышение точки росы).
Сжиженные газы, получаемые на предприятиях в процессе переработки нефти, кроме алканов содержат непредельные (ненасыщенные) углеводороды — алкены, имеющие общую химическую формулу СnН2n (начиная с n = 2). Основными компонентами этих газов, помимо пропана и бутана, являются пропилен и бутилен.
Наличие в сжиженном газе в значительных количествах этилена недопустимо, так как ведет к повышению упругости насыщенных паров.Свойства сжиженных газов для бытовых целей регламентирует ГОСТ Р 52087-2003 «Газы углеводородные сжиженные топливные» (табл. 3.3 и 3.4).
Таблица 3. Теплота сгорания и относительная плотность компонентов сухого природного газа (н.у.) (ГОСТ 22667-82).
Компонент | Теплота сгорания, мДж/м3 | Относительная плотность d | |
---|---|---|---|
высшая | низшая | ||
Метан СН4 | 39,82 | 35,88 | 0,555 |
Этан С2Н6 | 70,31 | 64,36 | 1,048 |
Пропан С3Н8 | 101,21 | 93,18 | 1,554 |
н-Бутан С4Н10 | 133,80 | 123,57 | 2,090 |
Изобутан С4Н10 | 132,96 | 122,78 | 2,081 |
Пентан С5Н12 | 169,27 | 156,63 | 2,671 |
Бензол С6Н6 | 162,62 | 155,67 | 2,967 |
Толуол С7Н8 | 176,26 | 168,18 | 3,180 |
Водород Н2 | 12,75 | 10,79 | 0,070 |
Оксид углерода СО | 12,64 | 12,64 | 0,967 |
Сероводород Н2S | 25,35 | 23,37 | 1,188 |
Диоксид углерода СО2 | – | – | 1,529 |
Азот N2 | – | – | 0,967 |
Кислород О2 | – | – | 1,050 |
Гелий He | – | – | 0,138 |
Таблица 4. Области применения различных марок сжиженных газов в различных регионах (ГОСТ Р 52087-2003).
Система газоснабжения | Применяемый сжиженный газ для микроклиматического района по ГОСТ 16350 | |||
---|---|---|---|---|
Умеренная зона | Холодная зона | |||
Летний период | Зимний период | Летний период | Зимний период | |
Газобалонная | ||||
с наружной установкой баллонов | ПБТ. П5А | ПТ. ПА | ПБТ. ПБА | ПТ, ПА |
с внутриквартирной установкой баллонов | ПБТ. ПБА | |||
портативные баллоны | БТ | |||
Групповые установки | ||||
без испарителей | ПБТ, ПБА | ПТ, ПА | ПТ, ПА, ПБТ, ПБА | ПТ, ПА |
с испарителями | ПБТ. ПБА. БТ | ПТ. ПА. ПБТ, ПБА, БТ | ПТ. ПА. ПБТ, ПБА | ПТ. ПА. ПБТ, ПБА |
Примечания:
- Для всех климатических районов, за исключением холодного и очень холодного: летний период — с 1 апреля по 1 октября, зимний период — с 1 октября по 1 апреля.
- Для холодных районов: летний период — с 1 июня по 1 октября; зимний периол — с 1 октября по 1 июня. 4. Для очень холодных районов: летний период — с 1 июня по 1 сентября, зимний период — с 1 сентября по 1 июня.
Таблица 5. Физико-химические и эксплуатационные показатели сжиженных газов (ГОСТ Р 52087-2003).
Показатель | Норма для марки | Метод,испытания | ||||
---|---|---|---|---|---|---|
ПТ | ПА | ПБА | ПБТ | БТ | ||
Массовая доля компонентов, %: | ||||||
сумма метана, этана и этилена | не нормируется | По ГОСТ 10679 | ||||
сумма пропана и пропилена, не менее | 75 | – | – | не нормируется | ||
в том числе пропана | – | 85±10 | 50±10 | – | – | |
сумма бутанов и бутиленов: | не нормируется | – | – | |||
не более | – | – | – | 60 | – | |
не менее | – | – | – | – | 60 | |
сумма непредельных углеводородов, не более | – | 6 | 6 | – | – | |
Объемная доля жидкого остатка при 20°С, %, не более | 0,7 | 0,7 | 1,6 | 1,6 | 1,8 | По 8.2 |
Давление насыщенных паров, избыточное, МПа, при температуре: | ||||||
45°С, не более | 1,6 | По ГОСТ Р 50994 или ГОСТ 28656 | ||||
-20°С, не менее | 0,16 | – | 0,07 | – | – | |
-30°С, не менее | – | 0,07 | – | – | – | |
Массовая доля сероводорода и меркаптановой серы, %, не более | 0,013 | 0,010 | 0,010 | 0,013 | 0,013 | По ГОСТ 229S5 или ГОСТ Р 50802 |
в том числе сероводорода, не более | 0,003 | По ГОСТ 229S5 или ГОСТ Р 50802 | ||||
Содержание свободной воды и щелочи | Отсутствие | По 8.2 | ||||
Интенсивность запаха, баллы, не менее | 3 | По ГОСТ 22387.5 или 8.3 |
Примечания:
- Допускается не определять интенсивность запаха при массовой доле меркаптановой серы в сжиженных газах марок ПТ, ПБТ и БТ 0,002% и более, а марок ПА и ПБА — 0,001% и более. При массовой доле меркаптановой серы менее указанных значений или интенсивности запаха менее 3 баллов сжиженные газы должны быть одорированы в установленном порядке.
- При температурах -20°С и -30°С давление насыщенных паров сжиженных газов определяют только в зимний период.
- При применении сжиженных газов марок ПТ и ПБТ в качестве топлива для автомобильного транспорта массовая доля суммы непредельных углеводородов не должка превышать 6%, а давление насыщенных паров должно быть не менее 0,07 МПа для марок ПТ и ПБТ при температурах -30°С и -20°С соответственно.
Таблица 6. зависимость плотности от температуры: пропан, изобутан, н-бутан
Температура,оС | Пропан | Изобутан | н-Бутан | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Удельный объём | Плотность | Удельный объём | Плотность | Удельный объём | Плотность | |||||||
Жидкость, л/кг | Пар, м3/кг | Жидкость, кг/л | Пар, кг/м3 | Жидкость, л/кг | Пар, м3/кг | Жидкость, кг/л | Пар, кг/м3 | Жидкость, л/кг | Пар, м3/кг | Жидкость, кг/л | Пар, кг/м3 | |
минус 60 | 1,650 | 0,901 | 0,606 | 1,11 | ||||||||
минус 55 | 1,672 | 0,735 | 0,598 | 1,36 | ||||||||
минус 50 | 1,686 | 0,552 | 0,593 | 1,810 | ||||||||
минус 45 | 1,704 | 0,483 | 0,587 | 2,07 | ||||||||
минус 40 | 1,721 | 0,383 | 0,581 | 2,610 | ||||||||
минус 35 | 1,739 | 0,308 | 0,575 | 3,250 | ||||||||
минус 30 | 1,770 | 0,258 | 0,565 | 3,870 | 1,616 | 0,671 | 0,619 | 1,490 | ||||
минус 25 | 1,789 | 0,216 | 0,559 | 4,620 | 1,639 | 0,606 | 0,610 | 1,650 | ||||
минус 20 | 1,808 | 0,1825 | 0,553 | 5,480 | 1,650 | 0,510 | 0,606 | 1,960 | ||||
минус 15 | 1,825 | 0,156 | 0,548 | 6,400 | 1,667 | 0,400 | 0,600 | 2,500 | 1,626 | 0,624 | 0,615 | 1,602 |
минус 10 | 1,845 | 0,132 | 0,542 | 7,570 | 1,684 | 0,329 | 0,594 | 3,040 | 1,635 | 0,514 | 0,612 | 1,947 |
минус 5 | 1,869 | 0,110 | 0,535 | 9,050 | 1,701 | 0,279 | 0,588 | 3,590 | 1,653 | 0,476 | 0,605 | 2,100 |
0 | 1,894 | 0,097 | 0,528 | 10,340 | 1,718 | 0,232 | 0,582 | 4,310 | 1,664 | 0,355 | 0,601 | 2,820 |
плюс 5 | 1,919 | 0,084 | 0,521 | 11,900 | 1,742 | 0,197 | 0,574 | 5,070 | 1,678 | 0,299 | 0,596 | 3,350 |
плюс 10 | 1,946 | 0,074 | 0,514 | 13,600 | 1,756 | 0,169 | 0,5694 | 5,920 | 1,694 | 0,254 | 0,5902 | 3,94 |
плюс 15 | 1,972 | 0,064 | 0,507 | 15,51 | 1,770 | 0,144 | 0,565 | 6,950 | 1,715 | 0,215 | 0,583 | 4,650 |
плюс 20 | 2,004 | 0,056 | 0,499 | 17,740 | 1,794 | 0,126 | 0,5573 | 7,940 | 1,727 | 0,186 | 0,5709 | 5,390 |
плюс 25 | 2,041 | 0,0496 | 0,490 | 20,150 | 1,815 | 0,109 | 0,5511 | 9,210 | 1,745 | 0,162 | 0,5732 | 6,180 |
плюс 30 | 2,070 | 0,0439 | 0,483 | 22,800 | 1,836 | 0,087 | 0,5448 | 11,50 | 1,763 | 0,139 | 0,5673 | 7,190 |
плюс 35 | 2,110 | 0,0395 | 0,474 | 25,30 | 1,852 | 0,077 | 0,540 | 13,00 | 1,779 | 0,122 | 0,562 | 8,170 |
плюс 40 | 2,155 | 0,035 | 0,464 | 28,60 | 1,873 | 0,068 | 0,534 | 14,700 | 1,801 | 0,107 | 0,5552 | 9,334 |
плюс 45 | 2,217 | 0,029 | 0,451 | 34,50 | 1,898 | 0,060 | 0,527 | 16,800 | 1,821 | 0,0946 | 0,549 | 10,571 |
плюс 50 | 2,242 | 0,027 | 0,446 | 36,800 | 1,9298 | 0,053 | 0,5182 | 18,940 | 1,843 | 0,0826 | 0,5426 | 12,10 |
плюс 55 | 2,288 | 0,0249 | 0,437 | 40,220 | 1,949 | 0,049 | 0,513 | 20,560 | 1,866 | 0,0808 | 0,536 | 12,380 |
плюс 60 | 2,304 | 0,0224 | 0,434 | 44,60 | 1,980 | 0,041 | 0,505 | 24,200 | 1,880 | 0,0643 | 0,532 | 15,400 |
Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием.
Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.
Таблица 7. использование суг для производства продуктов для органического синтеза
Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов.
Продукты прямого превращения углеводородных газов | Производное вещество | Конечный продукт | |
---|---|---|---|
первичное | вторичное | ||
Этилен | Полиэтилен | Полиэтиленовые пластмассы | |
Окись этилена | Поверхностно-активные вещества | ||
Этиленгликоль | Полиэфирное волокно, антифриз и смолы | ||
Этаноламины | Промышленные растворители, моющие вещества, мыло | ||
Хлорвинил | Хлорполивинил | Пластиковые трубы, пленки | |
Этанол | Этиловый эфир, уксусная кислота | Растворители, химические преобразователи | |
Ацетальдегид | Уксусный ангидрид | Ацетатная целлюлоза, аспирин | |
Нормальный бутан | |||
Винилцетат | Поливиниловый спирт | Пластификаторы | |
Поливинилацетат | Пластиковые пленки | ||
Этилбензол | Стирол | Полистироловые пластмассы | |
Акриловая кислота | Волокна, пластмассы | ||
Пропиональдегид | Пропанол | Гербициды | |
Пропионовая кислота | Консервирующие средства для зерна | ||
Пропилен | Акрилонитрил | Адипонитрил | Волокна (нейлон-66) |
Полипропилен | Пластичные пленки, волокна | ||
Окись пропилена | Пропиленкарбонат | Полиуретановые пены | |
Полипропиленгликоль | Специальные растворители | ||
Аллиловый спирт | Полиэфирные смолы | ||
Изопропанол | Изопропилацетат | Растворители типографических красок | |
Ацетон | Растворитель | ||
Изопропилбензол | Фенол | Фенольные смолы | |
Акролеин | Акрилаты | Латексные покрытия | |
Аллилхлориды | Глицероль | Смазочные вещества | |
Нормальные и изомолярные альдегиды | Нормальный бутанол | Растворитель | |
Изобутанол | Амидные смолы | ||
Изопропилбензол | |||
Номальные бутены | Полибутены | Смолы | |
Вторичный бутиловый спирт | Метилэтиловый кетон | Промышленные растворители, покрытия, связывающие вещества | |
Депарафинизирующие добавки к нефти | |||
Изобутилен | Изобутиленметиловый бутадиеновый сополимер | ||
Бутиловая смола | Пластмассовые трубы, герметики | ||
Третичный бутиловый спирт | Растворители, смолы | ||
Метилбутиловый третичный эфир | Повыситель октанового числа бензина | ||
Метакролеин | Метилметакрилат | Чистые пластиковые листы | |
Бутадиен | Стирилбутадиеновые полимеры | Буна-каучуковая синтетическая резина | |
Адипонитрил | Гексаметилендиамин | Нейлон | |
Сульфолен | Сульфолан | Очиститель промышленного газа | |
Хлоропрен | Синтетическая резина | ||
Бензол | Этилбензол | Стирол | Полистироловые пластмассы |
Изопропилбензол | Фенол | Фенольные смолы | |
Нитробензол | Анилин | Красители, резина, фотохимикаты | |
Линейный алкилбензол | Разлагающиеся под действием бактерий моющие вещества | ||
Малеиновый ангидрид | Модификаторы пластмасс | ||
Циклогексан | Капролактам | Нейлон-6 | |
Адипиновая кислота | Нейлон-66 | ||
Толуол | Бензол | Этилбензол, стирол | Полистироловые пластмассы |
Изопропилбензол, фенол | Фенольные смолы | ||
Нитробензол, хлорбензол, анилин, фенол | Красители, резина, фотохимикаты |
Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа.