Ацетилен

Ацетилен Кислород

2. Окисление алкинов сильными окислителями

Алкины реагируют с сильными окислителями (перманганаты или соединения хрома (VI)). При этом происходит окисление тройной связи С≡С и связей С-Н у атомов углерода при тройной связи. При этом образуются связи с кислородом.

При окислении трех связей у атома углерода в кислой среде образуется карбоксильная группа СООН, четырех — углекислый газ СО2. В нейтральной среде — соль карбоновой кислоты и карбонат (гидрокарбонат) соответственно.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагментKMnO4, кислая средаKMnO4, H2O, t
R-CR-COOH-COOMe
CHCO2Me2CO3 (MeHCO3)

При окислении бутина-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента СН3–C≡, поэтому образуется уксусная кислота:

При окислении 3-метилпентина-1  перманганатом калия в серной кислоте окислению подвергаются фрагменты R–C и H–C , поэтому образуются карбоновая кислота и углекислый газ:

При окислении алкинов сильными окислителями в нейтральной среде углеродсодержащие продукты реакции жесткого окисления (кислота, углекислый газ) могут реагировать с образующейся в растворе щелочью в соотношении, которое определяется электронным балансом с образованием соответствующих солей.

Например, при окислении бутина-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента R–C, поэтому образуется соль уксусной кислоты – ацетат калия

Аналогичные органические продукты образуются при взаимодействии алкинов с хроматами или дихроматами.

Окисление ацетилена протекает немного иначе, σ-связь С–С не разрывается, поэтому в кислой среде образуется щавелевая кислота:

Про кислород:  С2Н2 ацетилен. Свойства ацетилена. Получение ацетилена. | МеханикИнфо

В нейтральной среде образуется соль щавелевой кислоты – оксалат калия:

Обесцвечивание раствора перманганата калия — качественная реакция на тройную связь.

Кислотные свойства алкинов

Связь атома углерода при тройной связи (атома углерода в sp-гибридизованном состоянии) с водородом значительно более полярная. чем связь С–Н атома углерода при двойной или одинарной связи (в sp2 и sp3-гибридном состоянии соответственно). Это обусловлено большим вкладом s-орбитали в гибридизованное состояние.

Гибридизация:spsp2sp3
Число s-орбиталей111
Число p-орбиталей123
Доля s-орбитали50%33%25%

Повышенная полярность связи С–Н у атомов углерода при тройной связи в алкинах приводит к возможности отщепления протона Н , т.е. приводит к появлению у алкинов с тройной связью на конце молекулы (алкинов-1) кислотных свойств.  

Ацетилен и его гомологи с тройной связью на конце молекулы R–CC–H проявляют слабые кислотные свойства, атомы водорода на конце молекулы могут легко замещаться на атомы металлов.

Алкины с тройной связью на конце молекулы взаимодействуют с активными металлами, гидридами, амидами металлов и т.д.

Например, ацетилен взаимодействует с натрием с образованием ацетиленида натрия.
Например, пропин взаимодействует с амидом натрия с образованием пропинида натрия.

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра (I) или аммиачным раствором хлорида меди (I).

При этом образуются нерастворимые в воде ацетилениды серебра или меди (I):

Алкины с тройной связью на конце молекулы взаимодействуют с аммиачным раствором оксида серебра или аммиачным раствором хлорида меди (I) с образованием белого или красно-коричневого осадка соответственно. Это качественная реакция на алкины с тройной связью на конце молекулы.

Соответственно, алкины, в которых тройная связь расположена не на конце молекулы, не реагируют с аммиачными растворами оксида серебра или хлорида меди (I).

Про кислород:  Эфиры (понятия, свойства, применение)

Ацетилен — газ с самой высокой температурой пламени!

Температура горения ацетилена с кислородом
Ацетилен химическое соединение углерода и водорода. Ацетилен легче воздуха, 1 м3 ацетилена при 20°С и 760 мм рт. ст. плотность ацетилена равна 1,091 кг/м3. Плотность по отношению к воздуху 0,9. Критическая температура 35,9°С и критическое давление 61,6 кгс/см2.

При сгорании с кислородом он дает пламя с наиболее высокой температурой, которая достигает 3200°С, что объясняется его эндотермичностью (другие углеводороды экзотермичны, т. е. при распаде поглощают тепло). Химическая формула — C2H2, структурная формула Н-С=С-Н.

При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) ацетилен переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м3. Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора.

Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

… При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода.

Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи… Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь… Для полного сгорания нового газа необходимо 2,5 объема кислорода.

При этом образуются два объема углекислого газа и вода, которые являются единственными продуктами горения… Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода… Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.

Дэви получил карбид калия К2С2 и обработал его водой.

В статье «Карбид кальция и ацетилен — друзья не разлей вода!» мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Для полного сгорания 1 м3 ацетилена по реакции: С2Н2 2,5O2=2СO2 Н2O Q1

требуется теоретически 2,5 м3 кислорода или = 11,905 м3 воздуха. При этом выделяется тепло Q1 ≈ 312 ккал/моль. Высшая теплотворная способность 1 м3 ацетилена при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет QВ = 14000 ккал/м3 (58660 кДж/м3), что соответствует расчетной:

312×1,1709×1000/26,036 = 14000 ккал/м3

Низшая теплотворная способность при тех же условиях может быть принята QH = 13500 ккал/м3 (55890 кДж/м3).

Практически при сжигании — ацетилена в горелках при восстановительном пламени в горелку подается не 2,5 м3 кислорода на 1 м3 ацетилена, а всего лишь от 1 до 1,2 м3у что примерно соответствует неполному сгоранию по реакции:

С2H2 О2 = 2СО H2 Q2

где Q2 ≈ 60 ккал/моль или 2300 ккал/кг ацетилена. Остальные 1,5-1,3 м3 кислорода поступают в пламя из окруающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:

2СО H2 1,5О2 = 2СO2 H2O Q3

Реакция неполного горения протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад ацетилена на его составляющие по реакции:

С2H2 = 2С H2 Q4

где Q4≈54 ккал/моль или 2070 ккал/кг ацетилена.

Таким образом, общая полезная теплопроизводительность пламени ацетилена применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде ацетилена, и тепла, выделяемого при неполном сгорании, что составляет Q4 Q2 = 2070 2300 = 4370 ккал/кг или 4370×1,1709 ≈ 5120 ккал/м3.

При содержании ацетилена в смеси около 45% (т. е. при отношении кислорода к ацетилену, примерно равном 1,25) достигается максимальная температура ацетилено-кислородного пламени, которая составляет 3200°С. Следовательно температура пламени изменяется в зависимости от состава смеси.

При содержании 27% ацетилена достигается максимальная скорость воспламенения ацетилено-кислородной смеси, которая равна 13,5 м/сек. Следовательно, в зависимости от состава смеси также изменяется и скорость воспламенения.

Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.

ацетилена в смеси в объемных процентахМаксимальная температура пламени, °ССкорость воспламенения смеси, м/сек
121520252730323540455055
29202940296029702990301030603140320030702840
8,010,011,813,313,513,112,511,39,37,86,7

Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1×100/(1 11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только углекислый газ (СО2) и вода (H2О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.

С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% ацетилена — процесс горения прекращается или не возникает.

Ацетилен выпускают по ГОСТ 5457 растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных баллонах по ГОСТ 949, заполненных пористой, пропитанной ацетоном массой (см. статью «Полимеризация и растворение ацетилена». Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части.

Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см2), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см2). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг ацетилена по массе (4,6-5,3 м3 газа при 20°С и 760 мм рт. ст.).

Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом:

Температура, °СДавление, МПа
-5051015203040
1,31,4141,71,8122,43,0

Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм3/час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4.

То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3.

Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм3/час, при правом 650-750 дм3/час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва.

По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй.

Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Значения в других словарях

  1. ацетилен — -а, м. Бесцветный горючий ядовитый газ с неприятным запахом, состоящий из углерода и водорода (применяется для сварки и резки металлов и в синтезе органических веществ). [От лат. acetum — уксус] Малый академический словарь
  2. АЦЕТИЛЕН — АЦЕТИЛЕН — НС-СН, бесцветный газ, tкип = 84,1 °С. Получают из природных газов или карбида кальция. Сырье для синтеза винилхлорида, акрилонитрила, ацетальдегида, винилацетата и др.; горючее при сварке и резке металлов. Большой энциклопедический словарь
  3. ацетилен — Ацетилена, мн. нет, м. [от латин. acetum – уксус] (хим., тех.). Горючий, бесцветный газ, состоящий из углерода и водорода. Большой словарь иностранных слов
  4. ацетилен — сущ., кол-во синонимов: 4 алкен 6 газ 55 диссугаз 1 этин 1 Словарь синонимов русского языка
  5. ацетилен — АЦЕТИЛЕН -а; м. [от лат. acetum — уксус]. Бесцветный горючий ядовитый газ с неприятным запахом (применяется для сварки и резки металлов, получения синтетических полимеров и т.д.). ◁ Ацетиленовый, -ая, -ое. А. запах. Толковый словарь Кузнецова
  6. ацетилен — Ацет/ил/е́н/. Морфемно-орфографический словарь
  7. АЦЕТИЛЕН — АЦЕТИЛЕН, см. ЭТИН. Научно-технический словарь
  8. ацетилен — Ацетилен, ацетилены, ацетилена, ацетиленов, ацетилену, ацетиленам, ацетилен, ацетилены, ацетиленом, ацетиленами, ацетилене, ацетиленах Грамматический словарь Зализняка
  9. ацетилен — орф. ацетилен, -а Орфографический словарь Лопатина
  10. Ацетилен — Первый член группы ацетиленистых углеводородов, принадлежащей к ряду СnН2n — 2; химический состав его С2Н2, строение же В чистом состоянии А. получен и исследован Бертело в 1859… Энциклопедический словарь Брокгауза и Ефрона
  11. ацетилен — АЦЕТИЛЕН (этин) (от лат. acetum — уксус и греч. hyle — лес, дерево; вещество) CH≡CH мол. м. 26,04; бесцветный газ; т. пл. −81 °C/1277 мм рт. ст., т. возг. −84,1 °C; т. кип. −83,8 °C; плотн. Химическая энциклопедия
  12. ацетилен — ацетилен м. Бесцветный горючий газ с характерным запахом, применяемый при газовой сварке и резке металлов, для получения синтетических полимеров и т.п. Толковый словарь Ефремовой
  13. ацетилен — АЦЕТИЛ’ЕН, ацетилена, мн. нет, ·муж. (от ·лат. acetum — уксус) (·хим., тех.). Горючий, бесцветный газ, состоящий из углерода и водорода. Толковый словарь Ушакова
  14. ацетилен — АЦЕТИЛЕН, а, м. Бесцветный горючий газ, соединение углерода с водородом. | прил. ацетиленовый, ая, ое. Толковый словарь Ожегова
  15. ацетилен — АЦЕТИЛЕН а, м. acétylène m. <��лат. acet ( um ) — уксус и фр. ethylene. Бесцветный горючий газ с характерным запахом, применяемый при газовой сварке и резке металлов, для получения синтетических полимеров и. д. БАС-2. Словарь галлицизмов русского языка
  • Блог
  • Ежи Лец
  • Контакты
  • Пользовательское соглашение

Как синтезировался ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К2С2 2Н2О=С2Н2 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений.

Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С2Н3ацетилом.На латыни acetum – уксус; молекула уксусной кислоты (С2Н3О О Н, как записывали тогда ее формулу) рассматривалась как производное ацетила.

Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С2Н3 – Н = С2Н2.

Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами.

Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО 3С = СаС2 СО. Это произошло в конце XIX века.

Тогда ацетилен стали использовать для освещения. В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода.

Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени — от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому). Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы.

Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах. В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой.

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Технологическая схема процесса окислительного пиролиза

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую  температуру горения пламени.

Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий.

Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет  получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Реакции ацетилена

Ацетилен вступает в реакцию с различными соединениями, например, солями меди и серебра. В результате таких взаимодействий получают вещества под названием ацетилениды. Их отличительная черта — взрывоопасность.

Ацетилен
Получение ацетиленаАцетилен
Получение ацетиленаАцетилен

Горение ацетиленаАцетилен
Реакция окисления ацетиленаАцетилен
Реакция окисления ацетиленаАцетилен

Реакция полимеризацииАцетилен
Реакция замещения ацетилена

Физические свойства ацетилена:

Наименование параметра:Значение:
Цветбез цвета
Запахбез запаха
Вкусбез вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м31,0896
Плотность (при 0 °C и атмосферном давлении 1 атм.), кг/м31,173
Температура плавления, °C-80,8
Температура кипения, °C-80,55
Тройная точка, °C335
Температура самовоспламенения, °C335
Давление самовоспламенения, МПа0,14-0,16
Критическая температура*, °C35,94
Критическое давление, МПа6,26
Взрывоопасные концентрации смеси газа с воздухом, % объёмныхот 2,1 до 100
Удельная теплота сгорания, МДж/кг56,9
Температура пламени, °C3150-3200
Молярная масса, г/моль26,038

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства ацетилена аналогичны свойствам других представителей ряда алкинов. Поэтому для него характерны следующие химические реакции:

  1. 1. галогенирование ацетилена:

СH≡CH Br2 → CHBr=CHBr  (1,2-дибромэтен);

CHBr=CHBr Br2 → CHBr2-CHBr2   (1,1,2,2-тетрабромэтан).

Реакция протекает стадийно с образованием производных алканов.

В ходе данной реакции ацетилен обесцвечивает бромную воду.

  1. 2. гидрогалогенирование ацетилена:

СH≡CH HBr → CH2=CHBr  (бромэтен).

  1. 3. гидратация ацетилена (реакция Михаила Григорьевича Кучерова, 1881 г.):

CH≡CH H2O  →  [CH2=CH-OH] (енол) → CH3-CH=O (уксусный  альдегид ) (kat = HgSO4, Hg(NO3)2).

  1. 4. тримеризация ацетилена (реакция Николая Дмитриевича Зелинского, 1927 г.):

3СH≡CH → C6H6 (бензол) (kat = активированный уголь, to = 450-500 оС).

Реакция тримеризации ацетилена является частным случаем реакции полимеризации ацетилена и происходит при пропускании ацетилена над активированным углем при температуре 450-500 оС.

  1. 5. димеризация ацетилена:

СH≡CH СH≡CH → CH2=CH-С≡CH (винилацетилен) (kat = водный раствор CuCl и NH4Cl).

Реакция димеризации ацетилена является частным случаем реакции полимеризации ацетилена.

2СH≡CH 5О2 → 4CО2 2H2О.

Ацетилен горит белым ярким пламенем.

Протекание реакции и её продукты определяются средой, в которой она протекает.

  1. 8. восстановления ацетилена:

СH≡CH Н2 → C2H4 (этилен) (kat = Ni, Pd или Pt, повышенная to);

СH≡CH 2Н2 → C2H6 (этан) (kat = Ni, Pd или Pt, повышенная to).

Ацетилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. действия воды на карбид кальция:

CаС2 H2О → Cа(ОH)2 C2H2.

  1. 2. дегидрирования метана:

2CH4  → C2H2  3H2 (при to > 1500 оС).

  1. 3. дегидрирования этилена:

CH2=CH2→ СH≡CH H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).

Ацетилен в промышленности получают следующими способами и методами:

Сначала получают известь из карбоната кальция.

CаСО3 → CаО CO2. (to = 900-1200 оС).

Затем получают карбид кальция, сплавляя оксид кальция и кокс в электропечах при температуре 2500-3000 °С.

CаО 3С → CаС2 CO. (to = 2500-3000 оС).

Далее карбид кальция обрабатывают водой по известной реакции.

CаС2 H2О → Cа(ОH)2 C2H2.

В итоге получается ацетилен высокой чистоты – 99,9 %.

  1. 5. высокотемпературным крекингом метана:

Высокотемпературный крекинг метана осуществляется по известной реакции дегидирования метана в электродуговых печах при температуре 2000-3000 °С и напряжении между электродами 1000 В. Выход ацетилена составляет 50 %.

  1. 6. различными способами пиролиза метана:

Разновидностью высокотемпературного крекинга метана являются регенеративный пиролиз (Вульф-процесс), окислительный пиролиз (Заксе-процесс или BASF-процесс), гомогенный пиролиз, пиролиз в среде низкотемпературной плазмы.

Так, в ходе регенеративного пиролиза сначала сжигают метан и разогревают насадку печи до 1350-1400 °С. Затем через разогретую насадку на доли секунды пропускают метан, в результате образуется ацетилен.

В ходе окислительного пиролиза метан смешивают с кислородом и сжигают. Образующееся тепло служит для нагрева остатка метана до 1600 °С, который дегидрирует в ацетилен. Выход ацетилена составляет 30-32 %.

В ходе гомогенного пиролиза метан и кислород сжигают в печи при температуре 2000 °С. Затем предварительно нагретый до 600 °С остаток метана пропускают через печь, в результате образуется ацетилен.

При пиролизе в среде низкотемпературной плазмы метан нагревают струей ионизированного газа (аргона или водорода).

Химические свойства

Ацетилен
Ацетилено-кислородное пламя (температура «ядра» 2621 °C)
Для ацетилена (этина) характерны реакции присоединения:

HC≡CH Cl2 -> ClCH=СНСl

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³ (50,4 МДж/кг). При сгорании в кислороде температура пламени достигает 3150 °C.

Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в ~500 °C. В присутствии катализаторов, например, трикарбонил(трифенилфосфин)никеля, температуру реакции циклизации можно снизить до 60-70 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так, ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди.

Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.)

Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации, сводная таблица 2.)

Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

Реагирует с аммиачными растворами солей Cu(I) и Ag(I) с образованием малорастворимых, взрывчатых ацетиленидов — эта реакция используется для качественного определения ацетилена и его отличия от алкенов (которые тоже обесцвечивают бромную воду и раствор перманганата калия).

Про кислород:  Алкены: получение, строение и свойства | CHEMEGE.RU
Оцените статью
Кислород
Добавить комментарий