Определите валентность элементов по формуле соединения: Ag2O, HgO, HBr, P2O5, CO2 —

Определите валентность элементов по формуле соединения: Ag2O, HgO, HBr, P2O5, CO2 — Кислород

Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)

Валентность химических элементов – это способность у атомов химических элементов образовывать некоторое число химических связей. Определяется числом электронов атома затраченых на образование химических связей с другим атомом. Справочно: Электронные формулы атомов химических элементов.

Считается, что валентность химических элементов определяется группой (колонкой) Периодической таблицы . Действительно, теоретически, это самая распространенная валентность для элемента, но на практике поведение химических элементов значительно сложнее. Причина множественности значений валентности заключается в том, что существуют различные способы (или варианты) заполнения, при которых электронные оболочки стабилизируются. Поэтому, предлагаем Вашему вниманию таблицу валентностей химических элементов.

Числовое значение положительной валентности элемента равно числу отданных атомом электронов, а отрицательной валентности – числу электронов, которые атом должен присоединить для завершения внешнего энергетического уровня. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное..

Таблица валентностей химических элементов.

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

1

Водород valency/валентность Hydrogen

H

(-1), 1

2

Гелий valency/валентность Helium

He

0

3

Литий valency/валентность Lithium

Li

1

4

Бериллий valency/валентность Beryllium

Be

2

5

Бор valency/валентность Boron

B

-3, 3

6

Углерод valency/валентность Carbon

C

( 2), 4

7

Азот valency/валентность Nitrogen

N

-3, -2, -1, ( 1), 2, 3, 4, 5

8

Кислород valency/валентность Oxygen

O

-2

9

Фтор valency/валентность Fluorine

F

-1, ( 1)

10

Неон valency/валентность Neon

Ne

0

11

Натрий valency/валентность Sodium

Na

1

12

Магний valency/валентность Magnesium

Mg

2

13

Алюминий valency/валентность Aluminum

Al

3

14

Кремний valency/валентность Silicon

Si

-4, ( 2), 4

15

Фосфор valency/валентность Phosphorus

P

-3, 1, 3, 5

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

16

Сера valency/валентность Sulfur

S

-2, 2, 4, 6

17

Хлор valency/валентность Chlorine

Cl

-1, 1, ( 2), 3, ( 4), 5, 7

18

Аргон valency/валентность Argon

Ar

0

19

Калий valency/валентность Potassium

K

1

20

Кальций valency/валентность Calcium

Ca

2

21

Скандий valency/валентность Scandium

Sc

3

22

Титан valency/валентность Titanium

Ti

2, 3, 4

23

Ванадий valency/валентность Vanadium

V

2, 3, 4, 5

24

Хром valency/валентность Chromium

Cr

2, 3, 6

25

Марганец valency/валентность Manganese

Mn

2, ( 3), 4, ( 6), 7

26

Железо valency/валентность Iron

Fe

2, 3, ( 4), ( 6)

27

Кобальт valency/валентность Cobalt

Co

2, 3, ( 4)

28

Никель valency/валентность Nickel

Ni

( 1), 2, ( 3), ( 4)

29

Медь valency/валентность Copper

Сu

1, 2, ( 3)

30

Цинк valency/валентность Zinc

Zn

2

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

31

Галлий valency/валентность Gallium

Ga

( 2). 3

32

Германий valency/валентность Germanium

Ge

-4, 2, 4

33

Мышьяк valency/валентность Arsenic

As

-3, ( 2), 3, 5

34

Селен valency/валентность Selenium

Se

-2, ( 2), 4, 6

35

Бром valency/валентность Bromine

Br

-1, 1, ( 3), ( 4), 5

36

Криптон valency/валентность Krypton

Kr

0

37

Рубидий valency/валентность Rubidium

Rb

1

38

Стронций valency/валентность Strontium

Sr

2

39

Иттрий valency/валентность Yttrium

Y

3

40

Цирконий valency/валентность Zirconium

Zr

( 2), ( 3), 4

41

Ниобий valency/валентность Niobium

Nb

( 2), 3, ( 4), 5

42

Молибден valency/валентность Molybdenum

Mo

( 2), 3, ( 4), ( 5), 6

43

Технеций valency/валентность Technetium

Tc

6

44

Рутений valency/валентность Ruthenium

Ru

( 2), 3, 4, ( 6), ( 7), 8

45

Родий valency/валентность Rhodium

Rh

( 2), ( 3), 4, ( 6)

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

46

Палладий valency/валентность Palladium

Pd

2, 4, ( 6)

47

Серебро valency/валентность Silver

Ag

1, ( 2), ( 3)

48

Кадмий valency/валентность Cadmium

Cd

( 1), 2

49

Индий valency/валентность Indium

In

( 1), ( 2), 3

50

Олово valency/валентность Tin

Sn

2, 4

51

Сурьма valency/валентность Antimony

Sb

-3, 3, ( 4), 5

52

Теллур valency/валентность Tellurium

Te

-2, ( 2), 4, 6

53

Иод valency/валентность Iodine

I

-1, 1, ( 3), ( 4), 5, 7

54

Ксенон valency/валентность Xenon

Xe

0

55

Цезий valency/валентность Cesium

Cs

1

56

Барий valency/валентность Barium

Ba

2

57

Лантан valency/валентность Lanthanum

La

3

58

Церий valency/валентность Cerium

Ce

3, 4

59

Празеодим valency/валентность Praseodymium

Pr

3

60

Неодим valency/валентность Neodymium

Nd

3, 4

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

61

Прометий valency/валентность Promethium

Pm

3

62

Самарий valency/валентность Samarium

Sm

( 2), 3

63

Европий valency/валентность Europium

Eu

( 2), 3

64

Гадолиний valency/валентность Gadolinium

Gd

3

65

Тербий valency/валентность Terbium

Tb

3, 4

66

Диспрозий valency/валентность Dysprosium

Dy

3

67

Гольмий valency/валентность Holmium

Ho

3

68

Эрбий valency/валентность Erbium

Er

3

69

Тулий valency/валентность Thulium

Tm

( 2), 3

70

Иттербий valency/валентность Ytterbium

Yb

( 2), 3

71

Лютеций valency/валентность Lutetium

Lu

3

72

Гафний valency/валентность Hafnium

Hf

4

73

Тантал valency/валентность Tantalum

Ta

( 3), ( 4), 5

74

Вольфрам valency/валентность Tungsten

W

( 2), ( 3), ( 4), ( 5), 6

75

Рений valency/валентность Rhenium

Re

(-1), ( 1), 2, ( 3), 4, ( 5), 6, 7

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

76

Осмий valency/валентность Osmium

Os

( 2), 3, 4, 6, 8

77

Иридий valency/валентность Iridium

Ir

( 1), ( 2), 3, 4, 6

78

Платина valency/валентность Platinum

Pt

( 1), 2, ( 3), 4, 6

79

Золото valency/валентность Gold

Au

1, ( 2), 3

80

Ртуть valency/валентность Mercury

Hg

1, 2

81

Талий valency/валентность Thallium

Tl

1, ( 2), 3

82

Свинец valency/валентность Lead

Pb

2, 4

83

Висмут valency/валентность Bismuth

Bi

(-3), ( 2), 3, ( 4), ( 5)

84

Полоний valency/валентность Polonium

Po

(-2), 2, 4, ( 6)

85

Астат valency/валентность Astatine

At

нет данных

86

Радон valency/валентность Radon

Rn

0

87

Франций valency/валентность Francium

Fr

нет данных

88

Радий valency/валентность Radium

Ra

2

89

Актиний valency/валентность Actinium

Ac

3

90

Торий valency/валентность Thorium

Th

4

91

Проактиний valency/валентность Protactinium

Pa

5

92

Уран valency/валентность Uranium

U

( 2), 3, 4, ( 5), 6

Таблица валентности химических элементов:

Ниже приводится таблица валентности химических элементов с примерами соединений.

Валентность (от лат. valēns – «имеющий силу») – способность атомов химических элементов образовывать определённое число химических связей.

Валентность – это мера (численная характеристика) способности химических элементов образовывать определённое число химических связей.

Значения валентности записывают римскими цифрами I, II, III, IV, V, VI, VII, VIII.

Валентность определяют по числу химических связей, которые один атом образует с другими.

Таблица валентности химических элементов:

Атомный номерХимический элементСимволВалентностьПримеры соединенийПримечание
1ВодородHIHCl
2ГелийHeотсутствует
3ЛитийLiILiOH
4БериллийBeI, IIBeH, BeCO3
5БорBIIIB2O3
6УглеродCII, IVCO,  CH4
7АзотNI, II, III, IVN2O,  NO,  N2O3,  NO2В азотной кислоте (HNO3) и своем высшем оксиде (N2O5) атом азота образует только четыре ковалентные связи, являясь четырехвалентным
8КислородOIICaO
9ФторFIHF
10НеонNeотсутствует
11НатрийNaINa2S
12МагнийMgIIMg(NO3)2
13АлюминийAlIIIAlCl3
14КремнийSiII, IVSiO,  SiO2
15ФосфорPIII, VP2O3,  P2O5
16СераSII, IV, VIH2S,  SO2,  SO3
17ХлорClI, III, IV, V, VI, VIINaCl,  NaClO2,  NaClO2,  KClO3,  Cl2O6,  Cl2O7
18АргонArотсутствует
19КалийKIKOH
20КальцийCaIICa(OH)2
21СкандийScIIISc2O3
22ТитанTiII, III, IVTiO,  Ti2O3,  TiO2
23ВанадийVII, III, IV, VVO,  V2O3,  VO2,  V2O5
24ХромCrII, III, VICrO,  Cr2O3,  CrO3
25МарганецMnII, III, IV, VI, VIIMn(OH)2,  Mn2O3,  MnO2,  MnO3,  Mn2O7
26ЖелезоFeII, IIIFe(OH)2,  Fe(OH)3
27КобальтCoII, IIICoCl2,  CoCl3
28НикельNiII, IIINiO,  Ni2O3
29МедьCuI, IICu2O,  CuO
30ЦинкZnIIZnSO4
31ГаллийGaI, II, IIIGa2Se,  GaSe,  Ga2Se3
32ГерманийGeII, IVGeO,  GeO2
33МышьякAsIII, VAs2O3,  As2O5
34СеленSeII, IV, VIH2Se,  SeCl4,  H2SeO4
35БромBrI, III, V, VIIHBr,  HBrO2,  HBrO3,  HBrO4
36КриптонKrотсутствует
37РубидийRbIRbOH
38СтронцийSrIISrO
39ИттрийYIIIY(NO3)3
40ЦирконийZrII, III, IVZrF2,   ZrBr3,  ZrCl4
41НиобийNbI, II, III, IV, VNbH, NbO, NbI3, NbO2, Nb2O5
42МолибденMoII, III, IV, V, VIMoCl2, Mo(OH)3, MoO2, MoCl5, MoF6
43ТехнецийTcII, III, IV, V, VI, VIITcCl2, TcBr3, TcBr4, TcF5, TcCl6, Tc2O7
44РутенийRuII, III, IV, V, VI, VII, VIIIRu(OH)2, RuCl3, Ru(OH)4, Ru2O5, RuB2, NaRuO4, RuO4
45РодийRhII, III, IV, V, VIRhO, Rh2(SO4)3, Rh(OH)4, RhF5, RhF6
46ПалладийPdII, IVPdO, PdO2
47СереброAgI, II, IIIAg2O, AgO, Ag3P
48КадмийCdI, IICd2O, CdO
49ИндийInI, II, IIIIn2O, InO, In2O3
50ОловоSnII, IVSnSO4, Sn(SO4)2
51СурьмаSbIII, VSb2S3, Sb2S5
52ТеллурTeII, IV, VIH2Te, TeO2, K2TeO4
53ЙодII, III, V, VIIHI, HIO2, HIO3, HIO4
54КсенонXeотсутствует
55ЦезийCsICs2O
56БарийBaIIBa(OH)2
57ЛантанLaIIILa2(SO4)3
58ЦерийCeIII, IVCe(NO3)3, CeO2
59ПразеодимPrII, III, IVPrO, Pr2O3, PrO2
60НеодимNdII, IIINdO, Nd2O3
61ПрометийPmIIIPmBr3
62СамарийSmII, IIISmO, Sm(NO3)3
63ЕвропийEuII, IIIEuO, Eu(OH)3
64ГадолинийGdII, IIIGdS, Gd2O3
65ТербийTbII, III, IVTbH2, TbBr3, TbO2
66ДиспрозийDyII, IIIDyBr2, Dy2O3
67ГольмийHoIIIHo2(SO4)3
68ЭрбийErIIIEr2O3
69ТулийTmII, IIITmS, Tm2O3
70ИттербийYbII, IIIYbBr2, Yb2O3
71ЛютецийLuIIILuBr3
72ГафнийHfI, II, III, IVHfCl, HfS, HfBr3, Hf(SO4)2
73ТанталTaI, II, III, IV, VTa2O, TaO, TaCl3, TaO2, Ta2O5
74ВольфрамWII, III, IV, V, VIW6Cl12, WO3, WO2, W2Cl10, WF6
75РенийReI, II, III, IV, V, VI, VIIRe2O, ReO, Re2O3, ReO2, ReF5, ReCl6, ReF7
76ОсмийOsI, II, III, IV, V, VI, VII, VIIIOsI, OsI2, OsBr3, OsO2, OsCl4, OsF5, OsF6,  OsOF5,  OsO4
77ИридийIrI, II, III, IV, V, VIIrCl, IrCl2, IrCl3, IrO2, Ir4F20, IrF6
78ПлатинаPtII, III, IV, V, VIPtO, Pt2O3, PtO2, PtF5, PtF6,
79ЗолотоAuI, II, III, VAuBr,  AuS,  Au2O3,  Au2F10
80РтутьHgI, IIGdHg3,  HgH2
81ТаллийTlI, II, IIITl2S, TlS, TlBr3,
82СвинецPbII, IVPbO, PbO2
83ВисмутBiIII, VBi2O3, Bi2O5,
84ПолонийPoII, IV, VI
85АстатAtнет данных
86РадонRnотсутствует
87ФранцийFrIFrOH
88РадийRaIIRa(OH)2
89АктинийAcIIIAc2O3
90ТорийThII, III, IVThI2,  ThI3, Th(OH)4
91ПротактинийPaII, III, IV, VPaO,  PaH3,  Pa(OH)4,  Pa2O5
92УранUIII, IV, V, VI
93НептунийNpIII, IV, V, VI, VII
94ПлутонийPuIII, IV, V, VI, VII
95АмерицийAmII, III, IV, V, VI
96КюрийCmII, III, IV
97БерклийBkIII, IV
98КалифорнийCfII, III, IV
99ЭйнштейнийEsII, III
100ФермийFmII, III
Про кислород:  1. Кислород в соединениях обычно проявляет валентность равную: А) I; Б) III; В) II; Г) IV. 2. Соединения водорода с металлами на

Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода – двум, азота – трём, углерода – четырём.

Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединять один атом данного элемента.

Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях K2O, CO, N2O3, SiO2, SO3 валентность по кислороду калия равна единице, углерода – двум, азота – трём, кремния – четырём, серы – шести.

С точки зрения электронной теории валентность определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии.

Известны элементы, которые проявляют постоянную валентность. У большинства химических элементов валентность переменная.

Таблица химических элементов Д.И. Менделеева

Хром высшей валентности — справочник химика 21

Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом.

Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле.

Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д.

Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.

Изучен процесс озонирования в присутствии добавок, служащих донорами электронов (солей мета.ллов переменной валентности, галоидных соединений, аммиака и др.). Применение добавок дает возможность получать ароматические оксипроизводные, хиноны, карбоновые кислоты, перекисные соединения, нитрилы и другие соединения с высокой избирательностью.

Показано, что получение того или иного продукта зависит от скорости взаимодействия озона с добавкой. Приведены константы скорости. Описан синергетический эффект, наблюдаемый при использовании в качестве катализатора смеси солей хрома и марганца. Предложена схема процессов, объясняющая полученные результаты, согласно которой озонолиз ароматических соединений предотвращается быстрыми реакциями озона с добавками. [c.330]

Про кислород:  Купить датчик кислорода ДК889

Обработка катализатора водородом приводит к восстановлению ионов хрома высокой валентности в ионы Сг , которые, как хорошо известно, не являются активными центрами полимеризации. Поэтому (Сг 04) — промежуточный продукт восстановления — по-видимому, не образуется и увеличение каталитической активности не наблюдается. [c.183]

    Если активацию проводить при высоких температурах (600—700°С), то за счет разложения хрома высших валентностей до трехокиси хрома получается малоактивный катализатор. [c.86]

Часто транспассивное состояние связывается с гем, что пленка фазового окисла, пассивирующего электрод, окисляется до соединений, хорошо растворимых в воде и отвечающих более высокой валентности металла. Например, СггОз или СгОг, на хроме окисляется до СгОз, образующей СггО в кислых растворах или СгО » в щелочных [69]. Подобное же объяснение дается для железа (образование РеО ), никеля (образование КЮа) и других металлов. [c.249]

    NO r ПОН способствует первичной пассивации ЭП-220, по при более положительных значениях потенциала анодное растворение происходит через поры пленки вследствие растворения оксидов никеля и хрома более высокой валентности. [c.65]

Феррохром — сплав железа с большим содержанием хрома — получают восстановлением хромита углеродом в электропечах. Его используют при производстве легированных сталей. Сплавы хрома имеют очень важное значение, (причем особое место занимают его сплавы с железом специальные стали).

Хромовые стали отличаются высокой твердостью, вяз(костью и прочностью. Их свойства -можно связать с высокой металлической валентностью хрома (VI) и взаимодействием между разнородными атомами, что, как правило, приводит к получению сплавов, отличающихся более высокой твердостью и вязкостью, чем исходные металлы.

Полимеризация этилена при высоком давлении (100—350 МПа,, или 1000—3500 кгс/см ) протекает при 200—300°С в расплаве в присутствии инициаторов (кислорода, органических перекисей). Полиэтилен низкого давления получают полимеризацией этилена под давлением 0,2—0,5 МПа (2—5 кгс/см ) и температуре 50— 80 °С в присутствии комплексных металлоорганических катализаторов (триэтилалюминия, диэтилалюминийхлорида и триизобутил-алюминия).

Полиэтилен среднего давления получают полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35— 40 кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности, являющихся катализаторами (окислы хрома, молибдена, ванадия). В качестве растворителей применяют бензин, ксилол, циклогексан и др. [c.104]

Следует отметить, как это было указано ранее в гл. IV, что при высоких концентрациях азотной кислоты хромоиикелевые стали подвержены так называемому явлению перепассивации , прн котором пассивные пленки теряют свои защитные свойства вследствие иерехода хрома в окислы высшей валентности, неустойчивые в высококонцентрированной кислоте. [c.227]

Интересно отметить, что хром в металлическом состоянии имеет металлическую валентность 6, соответствующую степени окисления 6, характерной для хроматов и бихроматов, а не более низкой степени окисления -ЬЗ, характерной для солей хрома металлы марганец,, железо, кобальт и никель тоже имеют металлическую валентность 6, хотя почти все эти элементы образуют соединения со степенями окисления 2 и -ЬЗ. Ценные физические свойства переходных металлов обусловлены высокой металлической валентностью этих элементов. [c.494]

Окислительный потенциал системы Се Се в серной кислоте равняется 1,44 в. Такой высокий окислительный потенциал позволяет применять соли церия в качестве окислителя так же широко, как применяют растворы бихромата, ванадата и перманганата. Четырехвалентный церий в окислительных реакциях имеет ряд преимуществ по сравнению с перманганатом и бихроматом.

В присутствии неорганических анионов, обладающих окислительными свойствами, появляются иногда в растворах, а также в защитных пленках, ионы низшей валентности (например, Сг ). Последнее как будто противоречит тому, что было сказано выше о невозможности восстановления на железе в нейтральных средах ионов хромата или бихромата на самом же деле здесь никакого противоречия нет.

В начальный момент соприкосновения железа с электролитом происходит восстановление некоторого количества анионов хромата (реакция идет с очень малой скоростью) однако как только на поверхности железа образуется пленка из гидратов окиси хрома и железа, дальнейшее восстановление ионов хромата прекращается из-за высокого перенапряжения процесса. [c.57]

Изучение катализаторов в нестационарном состоянии позволило установить прямую связь между валентностью катионов окислов и селективностью в окислении углеводородов. Это открывает возможности предсказания поведения химических соединений определенного состава в качестве катализаторов окисления углеводородов.

Так, например, повышение содержания ионов хрома высокой валентности в СГ2О3 приводит к увеличению каталитической активности в реакции полного горения пропилена. Если допустить, что характер зависимости каталитических свойств от изменения валент- [c.

Направления дальнейших исследований. Обширный класс интерметаллических соединений, особенно очень стабильных Бруеровских соединений, представляет интерес для широкого применения в катализе, особенно в области получения синтетического топлива. Так, появляется возможность приготовления нанесенных интерметаллов, которые имеют необычно высокую термическую и химическую стойкость, комбинацией металлов группы УП1 с титаном, стронцием, гафнием, ванадием, ниобием, таллием, хромом, молибденом и вольфрамом.

Из-за очень сильных взаимодействий, возникающих при образовании данных соединений, ожидается, что спекание будет существенно уменьшено. Такие сильные взаимодействия, по-видимому, модифицируют электронные и каталитические свойства металла группы УП1.

В некоторых случаях это может приводить к ухудшению каталитических свойств. Например, для 2гР1з интенсивное изъятие электронов атомами циркония делает платину заметно истощенной по электронам, а поэтому менее металлической, чем платина нулевой валентности.

Подобно хрому, молибден и вольфрам проявляют переменную валентность, но, в отличие от хрома, устойчивыми у ннх являются соединения, отвечающие их высшей валентности 6. Их окислы МоОз и ШОз вследствие высокой валентности металла являются ангидридами.

Весовой метод основан на отделении осадка молибдена с а-бен-зоиноксимом Комплекс осаждают из холодного раствора серной кислоты (1 20), но допускаются и большие концентрации кислоты (1 4). Для предотвращения восстановления пятивалентного молибдена в раствор добавляют небольшой избыток брома.

Некоторые минералы, включающие металлы, которые окисляются до более высокого валентного состояния, можно разложить сплавлением со щелочными окислительными расплавами (смесь Na2 03 KNO3 или более агрессивно действующая Na202). Таковы, например, некоторые минералы из хрома, ванадия, молибдена, которые в этих условиях переходят соответственно в хроматы, ванадаты, молибдаты. Сплавление в этом случае также проводят в железных или никелевых тиглях. [c.448]

Молибден и вольфрам относятся к шестой группе периодической системы и входят в подгруппу хрома. Атомньш вес молибдена 95,95, заряд ядра 42. Атомный вес вольфрама 183,82, заряд ядра 74 находясь в пятом периоде, т. е. во втором большом периоде, молибден и вольфрам имеют следующее расположение электронов 2, 8, 18 13, 1 и 2, 8, 18, 32,12, 2 соответственно.

Вследствие такого расположения электронов молибден и вольфрам обладают переменной валентностью, причем наиболее устойчивой оказывается валентность 4 и 6 при валентности 6 атомы обоих элементов освобождаются от одного электрона с наружной оболочки и пяти электронов со второй, приобретая вследствие этого структуру атома инертного газа криптона.

В пассивном состоянии окисление самого металла протекает с очень малой скоростью, если ее отнести к общей поверхности электрода, но не прекращается совершенно. Ни фазовый окисел, ни адсорбционный слой кислорода не изолируют полностью поверхность металла от раствора.

Поэтому в отдельных местах поверхности, не фиксированных точно, а, вероятно, перемежающихся, может продолжаться растворение металла при высоком положительном потенциале. Если металл может существовать в нескольких степенях окисления, то более высокому положительному потенциалу часто отвечает образование ионов более высокой валентности.

Исследование А. Т. Ваграмяна и Д. Н. Усачева и показало, что в случае злектроосаждения хрома процесс осложняется наличием пленки на поверхности электрода. Согласно развитому в работе представлению [39], восстановление ионов хрома происходит не из ионов раствора, а непосредственно из продуктов пленки, образующейся в процессе электролиза на поверхности катода.

В состав этой пленки входят хромат-ионы и продукты их неполного восстановления, кроме того,— некоторое количество чужеродных анионов, без которых выделения металла не происходит. Д. Н. Усачевым и А. Т. Ваграмяном было предположено, что металлы, которые входят в пленку в виде сложных анионов и являются ее составной частью, могут разряжаться наряду с ионами хрома.

Исследование показало, что действительно при введении в раствор хромовой кислоты марганца в виде КМПО4 на катоде осаждается сплав марганец —хром, содержащий при определенных условиях электролиза (температура, плотность тока, концентрация) 15% Мп и 85% Сг.

Про кислород:  Кулонометрические гигрометры

При изменении условий электролиза состав сплава меняется. Следует отметить, что при введении в хромовый электролит марганца не в виде аниона, а в виде катиона М.п на катоде осаждается лишь хром, а марганец в осадке не обнаруживается. Это совершенно необычное, аномальное явление для электрохимии, когда в одинаковых условиях электролиза ион более высокой валентности восстанавливается до металла, а более низкой — не восстанавливается. [c.194]

Все известные до сих пор катализаторы для дегидрирования н-бутана и других парафиновых углеводородов состоят в основном из окислов хрома на окиси алюминия. Характерным свойством алю-мохромовых катализаторов является их высокая чувствительность к отравляющему действию воды.

У металлов, которые образуют несколько окислов, пассивирующим свойством обладает, как правило, только один из них. Например, у хрома и железа пленка, состоящая из МеаОд, малорастворима, неактивна и очень компактна. В случае анодного окисления при потенциале выше Е образуются соединения с более высокой валентностью, которые могут быть значительно более растворимы.

У хрома окисление хромистых соединений пассивной пленки до растворимых хромовокислых происходит уже при потенциале 1,2 в, тогда как выделение кислорода в кислых растворах начинается при 1,6 в. У железа Е выше Ео , так что кислород выделяется, не нарушая пассивной пленки.

О происходяш,ем восстановлении катализатора под действием этилена свидетельствует резкое уменьшение в нем содержания Ст в начале полимеризации, на что указывают данные анализа и изменение окраски катализатора. Так, например, в активированном воздухом катализаторе иодометрически определенное содержание Сг составляло 1,96 вес.

%, а через 3 мин. после начала реакции полимеризации оно равнялось 0,22 вес.%. По-ви-димому, для проявления катализатором полимеризуюш ей способности необходимо, чтобы это восстановление остановилось на промежуточном валентном состоянии, а не шло глубоко, до образования окисла трехвалентного хрома, который, как известно, не ведет полимеризацию [4, 5, 18, 26].

Поэтому суш ествование температурного предела, до которого катализатор активен (—180°), по-видимому, связано с тем, что при более высоких температурах происходит глубокое восстановление хрома (до Сг ). В литературе имеются высказывания о том, что каталитическая активность в реакции полимеризации связана с окислами хрома промежуточных валентностей [17—19].

Косси и Ван-Рейн [24] восстанавливали в мягких условиях образцы окиснохромового катализатора и снимали их спектры электронного парамагнитного резонанса (ЭПР). Наблюдаемые узкую и широкую линии они приписывают соединениям Сг и. Эти авторы высказывают предположение, что такие ионы хрома и являются активными центрами в реакции полимеризации.

Подтверждение в пользу образования иона пятивалентного хрома дается в работе В. Б. Казанского и Ю. И. Печерской [25]. Авторы работы показали, что узкая линия поглош,ения в спектрах электронного парамагнитного резонанса, снятых на неполностью восстановленных алюмохромовых катализаторах (СгОз на А12О3), обусловлена поверхностной фазой соединения Сг .

Оксиды лантана и калия усиливают гетероциклизующие, дегидрирующие и ослабляют крекирующие, коксообразующие свойства алюмохромового катализатора. Введение оксида калия также приводит к повышению стабильности катализатора. Стационарно работающий катализатор содержит ионы хрома низшей валентности [58, 61].

Но и в присутствии модифицированного алюмохромокалиевого катализатора выход тиофена из бутана и Н28 невелик — не превышает 30-40 %. Гетероциклизацию -бутана ведут при большой концентрации сероводорода, который обладает высокой коррозионной активностью.

Уменьшение этого нежелательного воздействия достигается [62] проведением каталшического процесса с небольшой концентрацией сероводорода, но в присутствии элементарной серы. При взаимодействии вьщеляющегося в процессе водорода с серой образуется сероводород, вступающий в реакцию гетероциклизации -бутана в тиофен. [c.177]

По мере накопления экспериментального материала выяснилось, что высокие давления вызывают зачастую уникальные изменения в веществах, которые никаким другими способами достигнуты быть не могут. Это может проявляться в переходе электрона с одной орбитали на другую (церий, цезий), переходе вещества из диэлектрика в состояние с металлической проводимостью (фосфор, оксиды железа, никеля, хрома), переходе вещества из. модификации с малой плотностью в модификацию с большой, в изменении валентности, получении совершенно новых соединений и т. д.

Все эти явления крайне интересны, и далеко не всем им в настоящее время дано убедительное объяснение. Давление существенно влияет и на кинетику различных процессов. Многочисленные примеры показывают, как действует давленпе на с.чорость реакций различных порядков и какие выводы можно сделать па основании исследования таких процессов.

Действие давления на сложные химические реакции редко удается объяснить до конца, ибо очень трудно выделить в суммарном эффекте, где давление проявило себя как действующее на равновесие процесса, а где — на его кинетику. Особо следует указать на давление, влияющее на скорость пространственно-затруд-ненных реакций. [c.6]

Если общее содержание хрома в катализаторе высоко, то доля Сг будет низкой. Однако активной является лишь та часть Сг , которая взаимодействует с поверхностью носителя именно этот Сг участвует i образовании АЦ. Остальная часть 6-валентного хроыг при активации с удалением влаги (при высоких температурах в токе сухого воздуха) превращается в неактивную фазу СГ2О3. [c.42]

Все три элемента близки по химическим свойствам. Это относится, в частности, к поливалентности, способности образовывать изополи-и гетерополисоединения, проявлению как металлических, так и неметаллических свойств.Основные свойства окислов усиливаются от хрома к вольфраму.

Хромовая кислота Н2СГО4 более сильная, чем вольфрамовая. Устойчивость соединений с низшей валентностью растет от вольфрама к хрому. Соединения Мо(У) более устойчивы, чем (V). Соединения Сг(П1) — ярко выраженные ионные соединения. Соединения (У) и Мо(У) почти не имеют ионного характера.

Хром находится в 6-й группе, в его электронной оболочке на два электрона больше, чем у титана. В основном состоянии атом хрома содержит две полузаполненные оболочки [Аг]3( 4з с шестью неспаренными электронами. Благодаря наличию шести валентных электронов и не очень высокой электроотрицательности хрома (1,6) химия его очень богата и разнообразна он проявляет все степени окисления от -2 до -Ьб.

Как и в случае титана, самые низкие степени окисления (-2, -1,0 и -Ы) проявляются только в комплексных соединениях с л-акцепторными лигандами, например в карбониле Сг(СО)в. Наиболее характерна для хрома степень окисления -ЬЗ и, соответственно, электронная конфигурация иона В природе хром встречается в основном в виде соединений Сг(Ш), например хромистого железняка ГеО СГ2О3, правда на Урале встречается красная свинцовая руда РЬСгО , в которой хром находится в степени окисления -Ьб, характеризуюш ейся выраженными окислительными свойствами. [c.347]

При адсорбции этана и пропана на молибдате хрома при 200-300 °С образуются поверхностные формы, характеризующиеся полосами поглощения 1390, 1450 и 1550 см . Их интерпретируют как валентные колебания групп формиатных и кар-боксилатных поверхностных структур [97].

НИЗШИМ валентным состояниям данного элемента. Однако в тех случаях, когда имеет место внутренняя конверсия у-лучей захвата, следствием ее может — явиться возникновение у атомов высокого положительного заряда, что соответствует процессу окисления. Так, при облучении гидратированных солей трехвалентного хрома до 10% радиоактивного хрома находится в шестивалентном состоянии, а при облучении хлорида четырехвалентного рения наблюдается образование иона перрената КеОГ [39]. [c.26]

Сила адсорбции представляет собой электростатическое притяжение между положительно заряженной внутренней частью иона и электронами металла или его окисла. Имеются основания считать, что в анионах типа МО » валентные электроны распределяются между центральным атомом и атомами кислорода по-разному.

В хромат-ионе, например, некоторые из электронов хрома, по всей вероятности, оттянуты от него и перешли к кислороду (электровалентная связь). Поэтому центр иона должен обнаруживать высокий положительный заряд. Благодаря этому заряду хромат-ион, адсорбированный поверхностью металла или окисной пленкой, может вытягивать свободные электроны с поверхности металла.

Это будет до некоторой степени ограничивать подвижность электронов и задерживать коррозию. Следует, однако, заметить, что выполненные нами совместно с Ларькиным квантовохимические расчеты показали, что связь хромат-ионов с железом осуществляется не центральным атомом хрома, а посредством кислородных атомов (подробно см. ниже). [c.68]

chem21.info

Оцените статью
Кислород
Добавить комментарий